首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
LRRK2 plays an important role in Parkinson''s disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons. In contrast, the deletion of the WD40 domain of zLRRK2 by morpholinos targeting splicing did not induce severe embryonic developmental defects; rather it caused Parkinsonism-like phenotypes, including loss of dopaminergic neurons in diencephalon and locomotion defects. These neurodegenerative and locomotion defects could be rescued by over-expressing zLRRK2 or hLRRK2 mRNA. The administration of L-dopa could also rescue the locomotion defects, but not the neurodegeneration. Taken together, our results demonstrate that zLRRK2 is an ortholog of hLRRK2 and that the deletion of WD40 domain of zLRRK2 provides a disease model for PD.  相似文献   

2.

Background

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD). LRRK2 contains an “enzymatic core” composed of GTPase and kinase domains that is flanked by leucine-rich repeat (LRR) and WD40 protein-protein interaction domains. While kinase activity and GTP-binding have both been implicated in LRRK2 neurotoxicity, the potential role of other LRRK2 domains has not been as extensively explored.

Principal Findings

We demonstrate that LRRK2 normally exists in a dimeric complex, and that removing the WD40 domain prevents complex formation and autophosphorylation. Moreover, loss of the WD40 domain completely blocks the neurotoxicity of multiple LRRK2 PD mutations.

Conclusion

These findings suggest that LRRK2 dimerization and autophosphorylation may be required for the neurotoxicity of LRRK2 PD mutations and highlight a potential role for the WD40 domain in the mechanism of LRRK2-mediated cell death.  相似文献   

3.
Autosomal-dominant missense mutations in LRRK2 (leucine-rich repeat kinase 2) are a common genetic cause of PD (Parkinson's disease). LRRK2 is a multidomain protein with kinase and GTPase activities. Dominant mutations are found in the domains that have these two enzyme activities, including the common G2019S mutation that increases kinase activity 2-3-fold. However, there is also a genetic variant in some populations, G2385R, that lies in a C-terminal WD40 domain of LRRK2 and acts as a risk factor for PD. In the present study we show that the G2385R mutation causes a partial loss of the kinase function of LRRK2 and deletion of the C-terminus completely abolishes kinase activity. This effect is strong enough to overcome the kinase-activating effects of the G2019S mutation in the kinase domain. Hsp90 (heat-shock protein of 90 kDa) has an increased affinity for the G2385R variant compared with WT (wild-type) LRRK2, and inhibition of the chaperone binding combined with proteasome inhibition leads to association of mutant LRRK2 with high molecular mass native fractions that probably represent proteasome degradation pathways. The loss-of-function of G2385R correlates with several cellular phenotypes that have been proposed to be kinase-dependent. These results suggest that the C-terminus of LRRK2 plays an important role in maintaining enzymatic function of the protein and that G2385R may be associated with PD in a way that is different from kinase-activating mutations. These results may be important in understanding the differing mechanism(s) by which mutations in LRRK2 act and may also have implications for therapeutic strategies for PD.  相似文献   

4.
The LRRK2 gene (Leucine-Rich Repeat Kinase 2, PARK8) is mutated in a significant number of cases of autosomal dominant Parkinson’s disease (PD) and in some sporadic cases of late-onset PD. LRRK2 is a large, complex protein that comprises several interaction domains: armadillo, ankyrin, leucine-rich repeats and WD40 domains; two catalytic domains: ROC-GTPase and serine/threonine kinase; and a COR domain (unknown function). Pathogenic mutations are scattered all over the domains of LRRK2, although the prevalence of mutations in some domains is higher (ROC-GTPase, COR and kinase). In this work, we model the structure of each domain to predict and explore the effects of described missense mutations and polymorphisms. The results allow us to postulate the possible effects of pathogenic mutations in the function of the protein, and hypothesize the importance of some polymorphisms that have not been linked directly to PD, but act as risk factors for the disease. In our analysis, we also study the effects of PD-related mutations in the kinase domain structure and in the phosphorylation of the activation loop to determine effects on kinase activity.  相似文献   

5.
Mutations in the LRRK2 (leucine-rich repeat kinase-2) gene cause late-onset PD (Parkinson's disease). LRRK2 contains leucine-rich repeats, a GTPase domain, a COR [C-terminal of Roc (Ras of complex)] domain, a kinase and a WD40 (Trp-Asp 40) motif. Little is known about how LRRK2 is regulated, what its physiological substrates are or how mutations affect LRRK2 function. Thus far LRRK2 activity has only been assessed by autophosphorylation and phosphorylation of MBP (myelin basic protein), which is catalysed rather slowly. We undertook a KESTREL (kinase substrate tracking and elucidation) screen in rat brain extracts to identify proteins that were phosphorylated by an activated PD mutant of LRRK2 (G2019S). This led to the discovery that moesin, a protein which anchors the actin cytoskeleton to the plasma membrane, is efficiently phosphorylated by LRRK2, at Thr558, a previously identified in-vivo-phosphorylation site that regulates the ability of moesin to bind actin. LRRK2 also phosphorylated ezrin and radixin, which are related to moesin, at the residue equivalent to Thr558, as well as a peptide (LRRKtide: RLGRDKYKTLRQIRQ) encompassing Thr558. We exploited these findings to determine how nine previously reported PD mutations of LRRK2 affected kinase activity. Only one of the mutations analysed, namely G2019S, stimulated kinase activity. Four mutations inhibited LRRK2 kinase activity (R1941H, I2012T, I2020T and G2385R), whereas the remainder (R1441C, R1441G, Y1699C and T2356I) did not influence activity. Therefore the manner in which LRRK2 mutations induce PD is more complex than previously imagined and is not only caused by an increase in LRRK2 kinase activity. Finally, we show that the minimum catalytically active fragment of LRRK2 requires an intact GTPase, COR and kinase domain, as well as a WD40 motif and a C-terminal tail. The results of the present study suggest that moesin, ezrin and radixin may be LRRK2 substrates, findings that have been exploited to develop the first robust quantitative assay to measure LRRK2 kinase activity.  相似文献   

6.
The leucine rich repeat kinase 2 (LRRK2/dardarin) is implicated in autosomal dominant familial and sporadic Parkinson's disease (PD); mutations in LRRK2 account for up to 40% of PD cases in some populations. LRRK2 is a large protein with a kinase domain, a GTPase domain, and multiple potential protein interaction domains. As such, delineating the functional pathways for LRRK2 and mechanisms by which PD-linked variants contribute to age-related neurodegeneration could result in pharmaceutically tractable therapies. A growing number of recent studies implicate dysregulation of mitogen activated protein kinases 3 and 1 (also known as ERK1/2) as possible downstream mediators of mutant LRRK2 effects. As these master regulators of growth, differentiation, neuronal plasticity and cell survival have also been implicated in other PD models, a set of common cell biological pathways may contribute to neuronal susceptibility in PD. Here, we review the literature on several major cellular pathways impacted by LRRK2 mutations – autophagy, microtubule/cytoskeletal dynamics, and protein synthesis – in context of potential signaling crosstalk involving the ERK1/2 and Wnt signaling pathways. Emerging implications for calcium homeostasis, mitochondrial biology and synaptic dysregulation are discussed in relation to LRRK2 interactions with other PD gene products. It has been shown that substantia nigra neurons in human PD and Lewy body dementia patients exhibit cytoplasmic accumulations of ERK1/2 in mitochondria, autophagosomes and bundles of intracellular fibrils. Both experimental and human tissue data implicate pathogenic changes in ERK1/2 signaling in sporadic, toxin-based and mutant LRRK2 settings, suggesting engagement of common cell biological pathways by divergent PD etiologies. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

7.
LRRK2 regulates synaptic vesicle endocytosis   总被引:1,自引:0,他引:1  
The leucine-rich repeat kinase 2 (LRRK2) has been identified as the defective gene at the PARK8 locus causing the autosomal dominant form of Parkinson's disease (PD). Although several LRRK2 mutations were found in familial as well as sporadic PD patients, its physiological functions are not clearly defined. In this study, using yeast two-hybrid screening, we report the identification of Rab5b as an LRRK2-interacting protein. Indeed, our GST pull down and co-immunoprecipitation assays showed that it specifically interacts with LRRK2. In addition, subcellular fractionation and immunocytochemical analyses confirmed that a fraction of both proteins co-localize in synaptic vesicles. Interestingly, we found that alteration of LRRK2 expression by either overexpression or knockdown of endogenous LRRK2 in primary neuronal cells significantly impairs synaptic vesicle endocytosis. Furthermore, this endocytosis defect was rescued by co-expression of functional Rab5b protein, but not by its inactive form. Taken together, we propose that LRRK2, in conjunction with its interaction with Rab5b, plays an important role in synaptic function by modulating the endocytosis of synaptic vesicles.  相似文献   

8.

Background

Mutations in LRRK2 encoding leucine-rich repeat kinase 2 are thus far the most frequent genetic cause associated with autosomal dominant and idiopathic Parkinson's disease (PD). To examine whether LRRK2 is directly associated with neuropathology of PD and other related disorders, we analyzed LRRK2 in brains of patients affected by PD and dementia with Lewy bodies (DLB) using highly specific antibodies to LRRK2.

Results

We demonstrated that anti-LRRK2 antibodies strongly labelled brainstem and cortical Lewy bodies, the pathological hallmarks of PD and DLB, respectively. In addition, anti-LRRK2 also labelled brain vasculature, axons, and neuronal cell bodies. Interestingly, the immunocytochemical profile of LRRK2 varied with different antibodies depending upon specific antigenic sites along the LRRK2 protein. All anti-LRRK2 antibodies tested that were raised against various regions of LRRK2, were found to be immunoreactive to recombinant LRRK2 on Western blots. However, only the antibodies raised against the N-terminal and C-terminal regions of LRRK2, but not the regions containing folded protein domains, were positive in immunolabeling of Lewy bodies, suggesting a differential exposure of specific antigenic sites of LRRK2 on tissue sections.

Conclusion

We conclude that LRRK2 is a component of Lewy bodies in both PD and DLB, and therefore plays an important role in the Lewy body formation and disease pathogenesis. Information on the cellular localization of LRRK2 under normal and pathological conditions will deepen our understanding of its functions and molecular pathways relevant to the progression of PD and related disorders.  相似文献   

9.
Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain 280 kDa protein that is linked to Parkinson''s disease (PD). Mutations especially in the GTPase and kinase domains of LRRK2 are the most common causes of heritable PD and are also found in sporadic forms of PD. Although the cellular function of LRRK2 is largely unknown there is increasing evidence that these mutations cause cell death due to autophagic dysfunction and mitochondrial damage. Here, we demonstrate a novel mechanism of LRRK2 binding and transport, which involves the small GTPases Rab32 and Rab38. Rab32 and its closest homologue Rab38 are known to organize the trans-Golgi network and transport of key enzymes in melanogenesis, whereas their function in non-melanogenic cells is still not well understood. Cellular processes such as autophagy, mitochondrial dynamics, phagocytosis or inflammatory processes in the brain have previously been linked to Rab32. Here, we demonstrate that Rab32 and Rab38, but no other GTPase tested, directly interact with LRRK2. GFP-Trap analyses confirmed the interaction of Rab32 with the endogenous LRRK2. In yeast two-hybrid experiments we identified a predicted coiled-coil motif containing region within the aminoterminus of LRRK2 as the possible interacting domain. Fluorescence microscopy demonstrated a co-localization of Rab32 and LRRK2 at recycling endosomes and transport vesicles, while overexpression of a constitutively active mutant of Rab32 led to an increased co-localization with Rab7/9 positive perinuclear late endosomes/MVBs. Subcellular fractionation experiments supported the novel role of Rab32 in LRRK2 late endosomal transport and sorting in the cell. Thus, Rab32 may regulate the physiological functions of LRRK2.  相似文献   

10.
The familial Parkinsonism gene LRRK2 regulates neurite process morphology   总被引:11,自引:0,他引:11  
Mutations in LRRK2 underlie an autosomal-dominant, inherited form of Parkinson's disease (PD) that mimics the clinical features of the common "sporadic" form of PD. The LRRK2 protein includes putative GTPase, protein kinase, WD40 repeat, and leucine-rich repeat (LRR) domains of unknown function. Here we show that PD-associated LRRK2 mutations display disinhibited kinase activity and induce a progressive reduction in neurite length and branching both in primary neuronal cultures and in the intact rodent CNS. In contrast, LRRK2 deficiency leads to increased neurite length and branching. Neurons that express PD-associated LRRK2 mutations additionally harbor prominent phospho-tau-positive inclusions with lysosomal characteristics and ultimately undergo apoptosis.  相似文献   

11.
The 2 major molecular switches in biology, kinases and GTPases, are both contained in the Parkinson disease–related leucine-rich repeat kinase 2 (LRRK2). Using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations, we generated a comprehensive dynamic allosteric portrait of the C-terminal domains of LRRK2 (LRRK2RCKW). We identified 2 helices that shield the kinase domain and regulate LRRK2 conformation and function. One helix in COR-B (COR-B Helix) tethers the COR-B domain to the αC helix of the kinase domain and faces its activation loop, while the C-terminal helix (Ct-Helix) extends from the WD40 domain and interacts with both kinase lobes. The Ct-Helix and the N-terminus of the COR-B Helix create a “cap” that regulates the N-lobe of the kinase domain. Our analyses reveal allosteric sites for pharmacological intervention and confirm the kinase domain as the central hub for conformational control.

The Parkinson’s disease-related protein LRRK2 contains the two major molecular switches in biology; a kinase and a GTPase. This study uses hydrogen-deuterium exchange mass-spectrometry and molecular dynamics simulations to explore the conformational space of the four C-terminal domains of LRRK2, highlighting two essential regulatory helices that control LRRK2 dynamics.  相似文献   

12.
Zach S  Felk S  Gillardon F 《PloS one》2010,5(10):e13191

Background

Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson''s disease, however, the underlying pathogenic mechanisms are poorly understood. Several in vitro studies have shown that the most frequent mutation, LRRK2(G2019S), increases kinase activity and impairs neuronal survival. LRRK2 has been linked to the mitogen-activated protein kinase kinase kinase family and the receptor-interacting protein kinases based on sequence similarity within the kinase domain and in vitro substrate phosphorylation.

Methodology/Principal Findings

We used an unbiased proteomic approach to identify the kinase signaling pathways wherein LRRK2 may be active. By incubation of protein microarrays containing 260 signal transduction proteins we detected four arrayed Ste20 serine/threonine kinase family members (TAOK3, STK3, STK24, STK25) as novel LRRK2 substrates and LRRK2 interacting proteins, respectively. Moreover, we found that protein kinase C (PKC) zeta binds and phosphorylates LRRK2 both in vitro and in vivo.

Conclusions/Significance

Ste20 kinases and PKC zeta contribute to neuronal Tau phosphorylation, neurite outgrowth and synaptic plasticity under physiological conditions. Our data suggest that these kinases may also be involved in synaptic dysfunction and neurite fragmentation in transgenic mice and in human PD patients carrying toxic gain-of-function LRRK2 mutations.  相似文献   

13.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson''s disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker''s yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human α-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration.  相似文献   

14.
Evidence of LRRK2 haplotypes associated with Parkinson’s disease (PD) risk was recently found in the Chinese population from Singapore, and a common LRRK2 missense variant, Gly2385Arg, was independently detected as a putative risk factor for PD in the Chinese population from Taiwan. To test the association between the Gly2385Arg variant in a large case-control sample of Chinese ethnicity from Singapore, and to perform functional studies of the wild type and Gly2385Arg LRRK2 protein in human cell lines. In a case-control study involving 989 Chinese subjects, the frequency of the heterozygous Gly2385Arg genotype was higher in PD compared to controls (7.3 vs. 3.6%, odds ratio = 2.1, 95% CI: 1.1–3.9, P = 0.014); these values yield an estimated population attributable risk (PAR) of ∼4%. In a multivariate logistic regression analysis with the disease group (PD vs. controls) as the dependent variable and the genotype as an independent factor with adjustments made for the effect of age and gender, the heterozygous Gly2385Arg genotype remained associated with an increased risk of PD compared to wild type genotype (odds ratio = 2.67, 95% CI: 1.43–4.99, P = 0.002). The glycine at position 2385 is a candidate site for N-myristoylation, and the Gly2385Arg variant replaces the hydrophobic glycine with the hydrophilic arginine, and increases the net positive charge of the LRRK2 WD40 domain. In transfection studies, we demonstrated that both the wild type and Gly2385Arg variant LRRK2 protein localize to the cytoplasm and form aggregates. However, under condition of oxidative stress, the Gly2385Arg variant was more toxic and associated with a higher rate of apoptosis. Our study lends support to the contention that the Gly2385Arg is a common risk factor for PD in the Chinese population. Our bioinformatics and in-vitro studies also suggest that the Gly2385Arg variant is biologically relevant and it might act through pro-apoptotic mechanisms.  相似文献   

15.
The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson’s disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared to WT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is required.  相似文献   

16.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of autosomal-dominant Parkinson's disease (PD). The second known autosomal-dominant PD gene (SNCA) encodes α-synuclein, which is deposited in Lewy bodies, the neuropathological hallmark of PD. LRRK2 contains a kinase domain with homology to mitogen-activated protein kinase kinase kinases (MAPKKKs) and its activity has been suggested to be a key factor in LRRK2-associated PD. Here we investigated the role of LRRK2 in signal transduction pathways to identify putative PD-relevant downstream targets. Over-expression of wild-type [wt]LRRK2 in human embryonic kidney HEK293 cells selectively activated the extracellular signal-regulated kinase (ERK) module. PD-associated mutants G2019S and R1441C, but not kinase-dead LRRK2, induced ERK phosphorylation to the same extent as [wt]LRRK2, indicating that this effect is kinase-dependent. However, ERK activation by mutant R1441C and G2019S was significantly slower than that for [wt]LRRK2, despite similar levels of expression. Furthermore, induction of the ERK module by LRRK2 was associated to a small but significant induction of SNCA, which was suppressed by treatment with the selective MAPK/ERK kinase inhibitor U0126. This pathway linking the two dominant PD genes LRRK2 and SNCA may offer an interesting target for drug therapy in both familial and sporadic disease.  相似文献   

17.
Leucine-rich repeat kinase 2: relevance to Parkinson's disease   总被引:3,自引:0,他引:3  
Human leucine-rich repeat kinase 2 (LRRK2) is a novel kinase belonging to the ROCO protein superfamily (Ras of complex proteins (Roc) with a C-terminal of Roc domain). This large complex protein of 280kDa contains several functional domains including leucine-rich repeats, Ras-related GTPase, mitogen-activated protein kinase kinase kinase (MAPKKK), and WD40 repeats. While definitive functions of LRRK2 have yet to be described, the domain structure of LRRK2 suggests that it plays an important role in the regulation of signal transduction cascades through its dual enzymatic activities of GTPase and MAPKKK. Moreover, mutations in LRRK2 have been found to be thus far the most frequent cause of late-onset familial and idiopathic Parkinson's disease. Further investigations should allow for the elucidation of how pathogenic mutations trigger changes in the structure and function of LRRK2 that lead to aberrant signal transduction and neurodegeneration in Parkinson's disease.  相似文献   

18.
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common known cause of Parkinson''s disease (PD). The clinical features of LRRK2 PD are indistinguishable from idiopathic PD, with accumulation of α-synuclein and/or tau and/or ubiquitin in intraneuronal aggregates. This suggests that LRRK2 is a key to understanding the aetiology of the disorder. Although loss-of-function does not appear to be the mechanism causing PD in LRRK2 patients, it is not clear how this protein mediates toxicity. In this study, we report that LRRK2 overexpression in cells and in vivo impairs the activity of the ubiquitin-proteasome pathway, and that this accounts for the accumulation of diverse substrates with LRRK2 overexpression. We show that this is not mediated by large LRRK2 aggregates or sequestration of ubiquitin to the aggregates. Importantly, such abnormalities are not seen with overexpression of the related protein LRRK1. Our data suggest that LRRK2 inhibits the clearance of proteasome substrates upstream of proteasome catalytic activity, favouring the accumulation of proteins and aggregate formation. Thus, we provide a molecular link between LRRK2, the most common known cause of PD, and its previously described phenotype of protein accumulation.  相似文献   

19.
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein that contains enzymatically functional GTPase and kinase domains. Several noncoding LRRK2 gene polymorphisms have been associated with susceptibility to Parkinson's disease (PD), Crohn's disease, and leprosy. Many LRRK2 coding polymorphisms have been associated with or causally linked to PD. The G2019S point mutation within the LRRK2 kinase domain is the most common cause of familial PD. The G2019S mutation appears to alter LRRK2 kinase activity. Some but not all studies have reported that LRRK2 kinase activity is dependent upon LRRK2 dimerization and membrane localization. It is important to define the oligomeric state(s) of LRRK2 in living cells, which to date have only been characterized in vitro. Here we use confocal and total internal reflection microscopy coupled with number and brightness analysis to study the oligomeric states of LRRK2 within the cytosol and on the plasma membrane of live CHO-K1 cells. Our results show, for the first time to our knowledge, that LRRK2 is predominantly monomeric throughout the cytosol of living cells, but attains predominately higher oligomeric states in the plasma membrane.  相似文献   

20.

Background

Parkinson's disease (PD) is the most prevalent incurable neurodegenerative movement disorder. Mutations in LRRK2 are associated with both autosomal dominant familial and sporadic forms of PD. LRRK2 encodes a large putative serine/threonine kinase with GTPase activity. Increased LRRK2 kinase activity plays a critical role in pathogenic LRRK2 mutant-induced neurodegeneration in vitro. Little is known about the physiological function of LRRK2.

Results

We have recently identified a Drosophila line with a P-element insertion in an ortholog gene of human LRRK2 (dLRRK). The insertion results in a truncated Drosophila LRRK variant with N-terminal 1290 amino acids but lacking C-terminal kinase domain. The homozygous mutant fly develops normally with normal life span as well as unchanged number and pattern of dopaminergic neurons. However, dLRRK mutant flies were selectively sensitive to hydrogen peroxide induced stress but not to paraquat, rotenone and β-mercaptoethanol induced stresses.

Conclusion

Our results indicate that inactivation of dLRRK kinase activity is not essential for fly development and suggest that inhibition of LRRK activity may serve as a potential treatment of PD. However, dLRRK kinase activity likely plays a role in protecting against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号