首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Negative Regulation of Cdc18 DNA Replication Protein by Cdc2   总被引:15,自引:4,他引:11       下载免费PDF全文
Fission yeast Cdc18, a homologue of Cdc6 in budding yeast and metazoans, is periodically expressed during the S phase and required for activation of replication origins. Cdc18 overexpression induces DNA rereplication without mitosis, as does elimination of Cdc2-Cdc13 kinase during G2 phase. These findings suggest that illegitimate activation of origins may be prevented through inhibition of Cdc18 by Cdc2. Consistent with this hypothesis, we report that Cdc18 interacts with Cdc2 in association with Cdc13 and Cig2 B-type cyclins in vivo. Cdc18 is phosphorylated by the associated Cdc2 in vitro. Mutation of a single phosphorylation site, T104A, activates Cdc18 in the rereplication assay. The cdc18-K9 mutation is suppressed by a cig2 mutation, providing genetic evidence that Cdc2-Cig2 kinase inhibits Cdc18. Moreover, constitutive expression of Cig2 prevents rereplication in cells lacking Cdc13. These findings identify Cdc18 as a key target of Cdc2-Cdc13 and Cdc2-Cig2 kinases in the mechanism that limits chromosomal DNA replication to once per cell cycle.  相似文献   

2.
Commitment to mitosis is regulated by cyclin-dependent kinase (CDK) activity. In the fission yeast Schizosaccharomyces pombe, the major B-type cyclin, Cdc13, is necessary and sufficient to drive mitotic entry. Furthermore, Cdc13 is also sufficient to drive S phase, demonstrating that a single cyclin can regulate alternating rounds of replication and mitosis, and providing the foundation of the quantitative model of CDK function. It has been assumed that Cig2, a B-type cyclin expressed only during S phase and incapable of driving mitosis in wild-type cells, was specialized for S-phase regulation. Here, we show that Cig2 is capable of driving mitosis. Cig2/CDK activity drives mitotic catastrophe—lethal mitosis in inviably small cells—in cells that lack CDK inhibition by tyrosine-phosphorylation. Moreover, Cig2/CDK can drive mitosis in the absence of Cdc13/CDK activity and constitutive expression of Cig2 can rescue loss of Cdc13 activity. These results demonstrate that in fission yeast, not only can the presumptive M-phase cyclin drive S phase, but the presumptive S-phase cyclin can drive M phase, further supporting the quantitative model of CDK function. Furthermore, these results provide an explanation, previously proposed on the basis of computational analyses, for the surprising observation that cells expressing a single-chain Cdc13-Cdc2 CDK do not require Y15 phosphorylation for viability. Their viability is due to the fact that in such cells, which lack Cig2/CDK complexes, Cdc13/CDK activity is unable to drive mitotic catastrophe.  相似文献   

3.
Progression through and completion of mitosis require the actions of the evolutionarily conserved Polo kinase. We have determined that the levels of Cdc5p, a Saccharomyces cerevisiae member of the Polo family of mitotic kinases, are cell cycle regulated. Cdc5p accumulates in the nuclei of G2/M-phase cells, and its levels decline dramatically as cells progress through anaphase and begin telophase. We report that Cdc5p levels are sensitive to mutations in key components of the anaphase-promoting complex (APC). We have determined that Cdc5p-associated kinase activity is restricted to G2/M and that this activity is posttranslationally regulated. These results further link the actions of the APC to the completion of mitosis and suggest possible roles for Cdc5p during progression through and completion of mitosis.  相似文献   

4.
Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr161 by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr14 and Tyr15 phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G2/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr15. In addition, Tyr15-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G2 and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr161 phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G2/M is tightly coupled and regulated by Cdc25 phosphatases.  相似文献   

5.
Cdc2–Cyclin B, the protein kinase that catalyzes the onset of mitosis, is subject to multiple forms of regulation. In the fission yeast Schizosaccharomyces pombe and most other species, a key mode of Cdc2–Cyclin B regulation is the inhibitory phosphorylation of Cdc2 on tyrosine-15. This phosphorylation is catalyzed by the protein kinases Wee1 and Mik1 and removed by the phosphatase Cdc25. These proteins are also regulated, a notable example being the inhibition of Wee1 by the protein kinase Nim1/Cdr1. The temperature-sensitive mutation cdc25–22 is synthetic lethal with nim1/cdr1 mutations, suggesting that a synthetic lethal genetic screen could be used to identify novel mitotic regulators. Here we describe that such a screen has identified cdr2+, a gene that has an important role in the mitotic control. Cdr2 is a 775 amino acid protein kinase that is closely related to Nim1 and mitotic control proteins in budding yeast. Deletion of cdr2 causes a G2-M delay that is more severe than that caused by nim1/cdr1 mutations. Genetic studies are consistent with a model in which Cdr2 negatively regulates Wee1. This model is supported by experiments showing that Cdr2 associates with the N-terminal regulatory domain of Wee1 in cell lysates and phosphorylates Wee1 in vitro. Thus, Cdr2 is a novel mitotic control protein that appears to regulate Wee1.  相似文献   

6.
Cell cycle control in the fission yeastSchizosaccharomyces pombe involves interplay amongst a number of regulatory molecules, including thecdc2, cdc13, cdc25, weel, andmik1 gene products. Cdc2, Cdc13, and Cdc25 act as positive regulators of cell cycle progression at the G2/M boundary, while Wee1 and Mik1 play a negative regulatory role. Here, we have screened for suppressors of the lethal premature entry into mitosis, termed mitotic catastrophe, which results from simultaneous loss of function of both Wee1 and Mik1. Through such a screen, we hoped to identify additional components of the cell cycle regulatory network, and/or G2/M-specific substrates of Cdc2. Although we did not identify such molecules, we isolated a number of alleles of bothcdc2 andcdc13, including a novel wee allele ofcdc2, cdc2-5w. Here, we characterizecdc2-5w and two alleles ofcdc13, which have implications for the understanding of details of the interactions amongst Cdc2, Cdc13, and Wee1.  相似文献   

7.
Excess production of nitric oxide and reactive nitrogen intermediates causes nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study the cell cycle regulation under nitrosative stress response. We discovered a novel intra-S-phase checkpoint that is activated in S. pombe under nitrosative stress. The mechanism for this intra-S-phase checkpoint activation is distinctly different than previously reported for genotoxic stress in S. pombe by methyl methane sulfonate. Our flow cytometry data established the fact that Wee1 phosphorylates Cdc2 Tyr15 which leads to replication slowdown in the fission yeast under nitrosative stress. We checked the roles of Rad3, Rad17, Rad26, Swi1, Swi3, Cds1, and Chk1 under nitrosative stress but those were not involved in the activation of the DNA replication checkpoint. Rad24 was found to be involved in intra-S-phase checkpoint activation in S. pombe under nitrosative stress but that was independent of Cdc25.  相似文献   

8.
Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G2 and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway.  相似文献   

9.
The DNA replication checkpoint inhibits mitosis in cells that are unable to replicate their DNA, as when nucleotide biosynthesis is inhibited by hydroxyurea. In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that this checkpoint involves the inhibition of Cdc2 activity through the phosphorylation of tyrosine-15. On the contrary, a recent biochemical study indicated that Cdc2 is in an activated state during a replication checkpoint, suggesting that phosphorylation of Cdc2 on tyrosine-15 is not part of the replication checkpoint mechanism. We have undertaken biochemical and genetic studies to resolve this controversy. We report that the DNA replication checkpoint in S. pombe is abrogated in cells that carry the allele cdc2-Y15F, expressing an unphosphorylatable form of Cdc2. Furthermore, Cdc2 isolated from replication checkpoint-arrested cells can be activated in vitro by Cdc25, the tyrosine phosphatase responsible for dephosphorylating Cdc2 in vivo, to the same extent as Cdc2 isolated from cdc25ts-blocked cells, indicating that hydroxyurea treatment causes Cdc2 activity to be maintained at a low level that is insufficient to induce mitosis. These studies show that inhibitory tyrosine-15 phosphorylation of Cdc2 is essential for the DNA replication checkpoint and suggests that Cdc25, and/or one or both of Wee1 and Mik1, the tyrosine kinases that phosphorylate Cdc2, are regulated by the replication checkpoint.  相似文献   

10.
In the fission yeast Schizosaccharomyces pombe, p34cdc2 plays a central role controlling the cell cycle. We recently isolated a new gene named srw1+, capable of encoding a WD repeat protein, as a multicopy suppressor of hyperactivated p34cdc2. Cells lacking srw1+ are sterile and defective in cell cycle controls. When starved for nitrogen source, they fail to effectively arrest in G1 and die of accelerated mitotic catastrophe if regulation of p34cdc2/Cdc13 by inhibitory tyrosine phosphorylation is compromised by partial inactivation of Wee1 kinase. Fertility is restored to the disruptant by deletion of Cig2 B-type cyclin or slight inactivation of p34cdc2. srw1+ shares functional similarity with rum1+, having abilities to induce endoreplication and restore fertility to rum1 disruptants. In the srw1 disruptant, Cdc13 fails to be degraded when cells are starved for nitrogen. We conclude that Srw1 controls differentiation and cell cycling at least by negatively regulating Cig2- and Cdc13-associated p34cdc2 and that one of its roles is to down-regulate the level of the mitotic cyclin particularly in nitrogen-poor environments.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G2 arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G2/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G2 arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G2 delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G2/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G2 arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G2 arrest at least in part through a Srk1/MK2-mediated mechanism.  相似文献   

12.
In Schizosaccharomyces pombe, wee1 encodes a tyrosine kinase that inhibits entry into mitosis by phophorylating Cdc2, the universal cyclin-dependent kinase (Cdk) that regulates the G2/M transition in all eukaryotic cells. A search for suppressors of the G2 arrest caused by overexpression of wee1 led to the isolation of a new allele of swo1 (named swo1-w1), the gene coding for chaperone Hsp90, which is required to stabilise Wee1. The swo1-w1 allele carries a glycine to aspartic acid substitution at amino acid 155 that results in a partial loss of Hsp90 function. Cells bearing the swo1-w1 mutation in combination with the point mutation cdc2-33 or cdc2-M26 showed severe mitotic defects. Genetic interactions were not observed in combination with point mutations in other cdc genes, suggesting that Cdc2 specifically interacts with Hsp90. This synthetic lethal swo1-w1 cdc2-33 (or cdc2-M26) strain had normal levels of Cdc2 protein and histone H1 phosphorylation activity, indicating that Hsp90 is required to enable Cdc2 to interact with its mitotic substrates or regulators, rather than for its proper folding or stabilisation. In a wild-type background, swo1-w1 mutant cells were sensitive to temperature as well as to other stress agents, such as KCl, ethanol and formamide. Under these stressful growth conditions, the swo1-w1 cells displayed anaphase B arrest and aberrant septation patterns, indicating that a subset of proteins involved in mitosis and cytokinesis is highly dependent on chaperone Hsp90 for function.  相似文献   

13.
Activation of the mitogen-activated protein kinase (MAPK) pathway by growth factors or phorbol esters during G2 phase delays entry into mitosis; however, the role of the MAPK pathway during G2/M progression remains controversial. Here, we demonstrate that activation of the MAPK pathway with either epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate induces a G2 phase delay independent of known G2 phase checkpoint pathways but was specifically dependent on MAPK/extracellular signal-regulated kinase kinase (MEK1). Activation of MAPK signaling also blocked exit from a G2 phase checkpoint arrest. Both the G2 phase delay and blocked exit from the G2 checkpoint arrest were mediated by the MEK1-dependent destabilization of the critical G2/M regulator cdc25B. Reintroduction of cdc25B overcame the MEK1-dependent G2 phase delay. Thus, we have demonstrated a new function for MEK1 that controls G2/M progression by regulating the stability of cdc25B. This represents a novel mechanism by which factors that activate MAPK signaling can influence the timing of entry into mitosis, particularly exit from a G2 phase checkpoint arrest.  相似文献   

14.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

15.
16.
Cell cycle control in the fission yeastSchizosaccharomyces pombe involves interplay amongst a number of regulatory molecules, including thecdc2, cdc13, cdc25, weel, andmik1 gene products. Cdc2, Cdc13, and Cdc25 act as positive regulators of cell cycle progression at the G2/M boundary, while Wee1 and Mik1 play a negative regulatory role. Here, we have screened for suppressors of the lethal premature entry into mitosis, termed mitotic catastrophe, which results from simultaneous loss of function of both Wee1 and Mik1. Through such a screen, we hoped to identify additional components of the cell cycle regulatory network, and/or G2/M-specific substrates of Cdc2. Although we did not identify such molecules, we isolated a number of alleles of bothcdc2 andcdc13, including a novel wee allele ofcdc2, cdc2-5w. Here, we characterizecdc2-5w and two alleles ofcdc13, which have implications for the understanding of details of the interactions amongst Cdc2, Cdc13, and Wee1.  相似文献   

17.
In Schizosaccharomyces pombe the onset of mitosis is regulated by a network of protein kinases and phosphatases. The M-phase inducing Cdc2-Cdc13 cyclin-dependent kinase is inhibited by Wee1 tyrosine kinase and activated by Cdc25 phosphatase. Wee1 is negatively regulated by Nim1 protein kinase. Here, we describe investigations aimed at better understanding the role of Nim1 in the mitotic control. The most important finding to emerge from these studies is that Wee1 and Nim1 have different patterns of intracellular localization. Immunofluorescence confocal microscopy has revealed that Nim1 is localized in the cytoplasm, whereas it substrate Wee1 is predominantly localized in the nucleus. Previous studies showed that the Cdc2-Cdc13 complex is located in the nucleus. Diversion of Nim1 to the nucleus, accomplished by addition of the SV40 nuclear localization signal, caused the advancement of M, confirming that Nim1 has restricted access to Wee1 in vivo. We propose that the intracellular distribution of Nim1 and Wee1 may serve to coordinate the regulation of nuclear Cdc2-Cdc13 with cytoplasmic growth.  相似文献   

18.

Background

During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G2/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G2/M have not yet been identified.

Scope

Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G2/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G2 phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G2 and early M-phase. Spcdc25-expressing tobacco (‘Samsun’) cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics.

Conclusions

The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G2/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G2/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.  相似文献   

19.
20.
Sophisticated models for the regulation of mitotic entry are lacking for human cells. Inactivating human cyclin A/Cdk2 complexes through diverse approaches delays mitotic entry and promotes inhibitory phosphorylation of Cdk1 on tyrosine 15, a modification performed by Wee1. We show here that cyclin A/Cdk2 complexes physically associate with Wee1 in U2OS cells. Mutation of four conserved RXL cyclin A/Cdk binding motifs (RXL1 to RXL4) in Wee1 diminished stable binding. RXL1 resides within a large regulatory region of Wee1 that is predicted to be intrinsically disordered (residues 1 to 292). Near RXL1 is T239, a site of inhibitory Cdk phosphorylation in Xenopus Wee1 proteins. We found that T239 is phosphorylated in human Wee1 and that this phosphorylation was reduced in an RXL1 mutant. RXL1 and T239 mutants each mediated greater Cdk phosphorylation and G2/M inhibition than the wild type, suggesting that cyclin A/Cdk complexes inhibit human Wee1 through these sites. The RXL1 mutant uniquely also displayed increased nuclear localization. RXL1 is embedded within sequences homologous to Crm1-dependent nuclear export signals (NESs). Coimmunoprecipitation showed that Crm1 associated with Wee1. Moreover, treatment with the Crm1 inhibitor leptomycin B or independent mutation of the potential NES (NESm) abolished Wee1 nuclear export. Export was also reduced by Cdk inhibition or cyclin A RNA interference, suggesting that cyclin A/Cdk complexes contribute to Wee1 export. Somewhat surprisingly, NESm did not display increased G2/M inhibition. Thus, nuclear export of Wee1 is not essential for mitotic entry though an important functional role remains likely. These studies identify a novel bifunctional regulatory element in Wee1 that mediates cyclin A/Cdk2 association and nuclear export.Despite broad progress in studies of cell cycle control in eukaryotes, advanced models are lacking for the regulation of mitotic entry in human cells. This regulation is pivotal in cell cycle control, and a better understanding of it may be crucial to improving cytotoxic cancer chemotherapy, the mainstay of cancer treatment. Models of mitotic entry in higher eukaryotes revolve around activation of the cyclin B/Cdk1 (cyclin-dependent kinase 1 or Cdc2) complex, which drives the major events of mitosis. A rise in the cyclin B level triggers mitotic entry in Xenopus egg extracts but not in mammalian cells (15, 47). Inhibitory phosphorylation of Cdk1 on the ATP-binding site residue tyrosine 15 (Y15) has been recognized as a key constraint throughout eukaryotes (29, 42). Wee1 and Myt kinases perform this phosphorylation in vertebrate cells, where Wee1 appears to be dominant (34). Kim and Ferrell and others have recently developed an elegant model for ultrasensitive, switch-like inactivation of Wee1 by cyclin B/Cdk1 in a positive feedback loop that contributes to mitotic entry in Xenopus egg extracts (27).Although cyclin A(A2)/Cdk2 is traditionally omitted from models of mitotic entry, accumulating evidence from several different approaches suggests that cyclin A/Cdk complexes play roles. Cyclin A levels rise during S phase and peak in G2 before falling abruptly in prometaphase of mitosis (60). Microinjection of cyclin A/Cdk2 complexes in human G2 phase cells was observed to drive mitotic entry (14). Conversely, microinjection of antibodies directed against cyclin A in S-phase cells inhibited mitotic entry without an apparent effect on bulk DNA synthesis (45). In complementary approaches that supported biochemical analyses, cyclin A RNA interference (RNAi) or induction of a dominant negative mutant of Cdk2 (Cdk2-dn), the major cyclin A binding partner, inhibited mitotic entry (13, 15, 21, 37). In these settings, cyclin B/Cdk1 complexes accumulated in inactive, Y15-phosphorylated forms (13, 21, 37). Cdc25 phosphatases, which can reverse this phosphorylation, show reduced activity in this context (37), but increased Cdc25 activity could not readily overcome the arrest (13). RNAi-mediated knockdown of Wee1 was found capable of overriding the arrest mediated by cyclin A RNAi, suggesting that Wee1 is a key rate-limiting factor (13). However, whether and by what mechanisms cyclin A complexes might regulate Wee1 and drive Cdk1 dephosphorylation and mitotic entry have remained unclear.Recently, genetic studies in mice have reinforced these observations while providing evidence for some cell type differences (24). Although Cdk2 is not essential, in its absence Cdk1 binds more cyclin A and E and provides redundant functions (4, 25, 44). Deletion of the cyclin A gene is lethal for embryos and adults (24). Gene deletion in fibroblasts in vitro did not completely abrogate their proliferation but caused S and G2/M delays. In this setting cyclin E was upregulated, and combined deletion of cyclin E yielded arrest in G1, S, and G2/M phases. Cyclin A gene deletion was alone sufficient to block proliferation of hematopoietic stem cells, suggesting that cyclin A is essential for their proliferation.Wee1 is regulated on multiple levels, including inhibitory phosphorylation in the amino-terminal regulatory domain (NRD), residues 1 to 292. This region is predicted to be intrinsically disordered (56), and few functional elements have been identified in it. The cyclin B/Cdk1 complex has been thought to be the principal or exclusive kinase responsible for NRD phosphorylation (18, 27, 28). Two sites in the Xenopus embryonic Wee1 NRD, Thr 104 and Thr 150 (referred to here by the homologous residue, T239, in human somatic Wee1), have been identified as Cdk phosphorylation sites that inhibit Wee1 activity (28). Recent studies of Xenopus somatic Wee1 suggest that T239 phosphorylation may antagonize the function of a surrounding motif, dubbed the Wee box (43). This small, conserved region appears to augment the activity of the carboxy-terminal kinase domain.We show here that cyclin A/Cdk2 complexes directly bind Wee1 as a substrate in human cells. In particular, a conserved cyclin A/Cdk binding RXL motif in the Wee1 NRD is required for efficient T239 phosphorylation. Further analysis revealed that RXL1 is located within a Crm1 binding site that mediates Wee1 export during S and G2 phases. Cyclin A/Cdk2 activity appears to foster Wee1 export, but this export is not essential for mitotic entry. These findings further define roles of cyclin A/Cdk complexes in regulating Wee1 and mitotic entry in human cells and dissect the mechanisms and consequences of Wee1 redistribution during the run-up to mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号