首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bioprocess and Biosystems Engineering - Menaquinone-7 (MK-7) as the most important form of Vitamin K has been reported to have miraculous benefits such as preventing cardiovascular diseases and...  相似文献   

2.
To invent a functional natto promoting bone formation, the construction of a strain with high productivity of vitamin K2 (menaquinone-7: MK-7), which is important in the carboxylation of a kind of bone protein participating in bone formation, osteocalcin, was investigated. To screen for a strain appropriate to making natto (a Japanese traditional fermented soybean food) with high productivity of MK-7, a combination of analog resistance to the compounds on the biosynthetic pathway of menaquinones with mutation was done. Consequently, strain OUV23481, with 2-fold higher productivity (1,719 microg/100 g natto) of MK-7 than that of a commercial strain, was constructed as a mutant with analog resistance to 1-hydroxy-2-naphthoic acid (HNA), p-fluoro-D,L-phenylalanine (pFP), m-fluoro-D,L-phenylalanine (mFP), and beta-2-thienylalanine (betaTA). This strain was classified as Bacillus subtilis (natto). The natto made using this strain was evaluated to have a good quality as natto in all the viewpoints of appearance, flavor, taste, texture, and stringiness.  相似文献   

3.
4.
5.
Treatment of Bacillus subtilis (natto) strains Asahikawa, F, and M with acridine orange resulted in the conversion of approximately 64.2% of the Asahikawa population, 22.4% of the F population, and 9.2% of the M population to polyglutamate-nonproducing colonies. Such curing is suggestive of the involvement of plasmid DNA. Samples of cleared lysates of both parental and their cured strains were subjected to agarose gel electrophoresis to determine the plasmid composition. Parental strains were found to possess a plasmid, but polyglutamate-nonproducing derivatives were missing the plasmid. The plasmid-linked polyglutamate production, which was originally isolated from B. subtilis (natto), could be transformed in B. subtilis.  相似文献   

6.
Efficient production of menaquinone (MK) by Bacillus subtilis was achieved. An edible strain of B. subtilis, isolated from the traditional Japanese food natto, was mutated to improve MK productivity. A menadione-resistant mutant producing 30% more MK than its parent strain was obtained. Soybean extract and glycerol were the best nitrogen and carbon sources, respectively, among the sources tested. Addition of yeast extract also increased MK productivity. The maximum concentration of MK reached about 35.0 mg/l after 4 days of culture in a jar fermenter. The pH of the medium decreased to 5.5 after the start of cultivation, then spontaneously increased to 7.7–8.0. This pH change might be important in the production of MK because only small amounts of MK were obtained when pH was controlled at 5.7, 6.0, 7.0, 7.5 or 8.0. Journal of Industrial Microbiology & Biotechnology (2001) 26, 115–120. Received 24 April 2000/ Accepted in revised form 14 August 2000  相似文献   

7.
T Hara  A Aumayr  Y Fujio    S Ueda 《Applied microbiology》1982,44(6):1456-1458
Treatment of Bacillus subtilis (natto) strains Asahikawa, F, and M with acridine orange resulted in the conversion of approximately 64.2% of the Asahikawa population, 22.4% of the F population, and 9.2% of the M population to polyglutamate-nonproducing colonies. Such curing is suggestive of the involvement of plasmid DNA. Samples of cleared lysates of both parental and their cured strains were subjected to agarose gel electrophoresis to determine the plasmid composition. Parental strains were found to possess a plasmid, but polyglutamate-nonproducing derivatives were missing the plasmid. The plasmid-linked polyglutamate production, which was originally isolated from B. subtilis (natto), could be transformed in B. subtilis.  相似文献   

8.
Summary An open-loop, on-off control system using the dissolved oxygen level to control a glucose feed was used in a study of growth and production of protease by Bacillus subtilis CNIB 8054. With this system, both glucose and oxygen were controlled at low concentrations. In batch fermentations, protease activity in the fermentation broth was maximum when growth had stopped. During oxygen-controlled, glucose fed-batch fermentations, growth and the production of protease activity continued during glucose feeding. Oxygen-controlled, glucose fed-batch fermentations produced more protease activity than batch fermentations, depending upon the set point for dissolved oxygen. These results indicate that control of glucose and oxygen concentrations can result in improvements in protease production.  相似文献   

9.
Bacillus subtilis natto is the key microorganism for the industrial production of menaquinone-7. The fermentation of this bacterium in static culture is associated with biofilm formation. The objective of this study was to determine the effect of biofilm formation on menaquinone-7 production to develop a suitable bio-reactor for the production of menaquinone-7. In the static culture, menaquinone-7 biosynthesis showed a linear correlation with biofilm formation (R 2 = 0.67) and cell density (R 2 = 0.7). The amount of biofilm, cell density and menaquinone-7 formation were a function of nutrient and processing conditions. Glycerol, soy peptone, and yeast extract mixture and 40 °C were found to be the optimum nutrients and temperature for accelerating both biofilm and menaquinone-7 biosynthesis in static culture. However, glucose, mixture of soy peptone and yeast extract and 45 °C were found to be the optima for cell density. As compared to the static culture, the biofilm formation was significantly inhibited when a shaken fermentation was used. However, shaking caused only a small decrease on menaquinone-7 production. These results demonstrate that the biofilm formation is not essential for menaquinone-7 biosynthesis. This study underlines the feasibility of using large scale stirred fermentation process for menaquinone-7 production.  相似文献   

10.
11.
Bioprocess and Biosystems Engineering - Menaquinone-7 (MK-7) plays an important role in blood clotting, cardiovascular disease and anti-osteoporosis, and has been wildly used in the food additives...  相似文献   

12.
Hydrolysis of isoflavone glycosides by Bacillus subtilis natto NTU-18 in black soymilk is reported. At the concentration of 3–5% (w/v), black soymilk in flask cultures, the isoflavones, daidzin, and genistin were highly deglycosylated within 24 h. Deglycosylation of isoflavones was further carried out in a 7-l fermenter with 5% black soymilk. During the fermentation, viable cells increased from 103 to 109 CFU ml−1 in 15 h, and the activity of β-glucosidase appeared at 8 h after inoculation and reached a maximum (3.3 U/ml) at 12 h, then decreased rapidly. Deglycosylation of isoflavone glycosides was observed at the same period, the deglycosylation rate of daidzin and genistin at 24 h was 100 and 75%, respectively. It is significantly higher than the previous reports of fermentation with lactic acid bacteria. In accordance with the deglycosylation of isoflavone glycosides, the estrogenic activity of the 24 h fermented black soymilk for ERβ estrogen receptor increased to threefold; meanwhile, the fermented broth activated ERα estrogen receptor to a less extent than ERβ. These results suggest that this fermentation effectively hydrolyzed the glycosides from isoflavone in black soymilk and the fermented black soymilk has the potential to be applied to selective estrogen receptor modulator products.  相似文献   

13.
Defined minimal media conditions were used to assess and subsequently enhance the production of subtilisin by genetically characterized Bacillus subtilis strains. Subtilisin production was initiated by the exhaustion or limitation of ammonium in batch and fed-batch cultures. Expression of the subtilisin gene (aprE) was monitored with a chromosomal aprE::lacZ gene fusion. The beta-galactosidase production driven by this fusion reflected subtilisin accumulation in the culture medium. Subtilisin gene expression was temporally extended in sporulation-deficient strains (spoIIG), relative to co-genic sporogenous strains, resulting in enhanced subtilisin production. Ammonium exhaustion not only triggered subtilisin production in asporogenous spoIIG mutants but also shifted carbon metabolism from acetate production to acetate uptake and resulted in the formation of multiple septa in a significant fraction of the cell population. Fed-batch culture techniques, employing the spoIIG strain, were investigated as a means to further extend subtilisin production. The constant provision of ammonium resulted in linear growth, with doubling times of 11 and 36 h in each of two independent experiments. At the lower growth rate, the responses elicited (subtilisin production, glucose metabolism, and morphological changes) during the feeding regime closely approximated the ammonium starvation response, while at the higher growth rate a partial starvation response was observed.  相似文献   

14.
A biofilm reactor not only shortens the lag phase of nisin production, but also enhances nisin production when combined with an appropriate pH profile. Due to the substrate inhibition that takes place at high levels of carbon source, fed-batch fermentation was proposed as a better alternative for nisin production. In this study, the combined effects of fed-batch fermentation and various pH profiles on nisin production in a biofilm reactor were evaluated. The tested pH profiles include 1) a constant pH profile at 6.8 (profile 1), 2) a constant pH profile with an autoacidification after 4 h (profile 2), and 3) a step-wise pH profile with pH adjustment every 2 h (profile 3). When profile 1 was applied, fed-batch fermentation enhanced nisin production for both suspended-cell (4,188 IU ml−1) and biofilm (4,314 IU ml−1) reactors, yielded 1.8- and 2.3-fold higher nisin titer than their respective batch fermentation. On the other hand, pH profiles that include periods of autoacidification (profiles 2 and 3) resulted in a significantly lower nisin production in fed-batch fermentation (2,494 and 1,861 IU ml−1 for biofilm reactor using profile 2 and 3, respectively) due to toxicity of excess lactic acid produced during the fermentation. Overall, this study suggested that fed-batch fermentation can be successfully used to enhance nisin production for both suspended-cell and biofilm reactors.  相似文献   

15.
The 55-kilobase plasmid, pLS20, of Bacillus subtilis (natto) 3335 promotes transfer of the tetracycline resistance plasmid pBC16 from B. subtilis (natto) to the Bacillus species B. anthracis, B. cereus, B. licheniformis, B. megaterium, B. pumilus, B. subtilis, and B. thuringiensis. Frequency of pBC16 transfer ranged from 2.3 x 10(-6) to 2.8 x 10(-3). Evidence for a plasmid-encoded conjugationlike mechanism of genetic exchange includes (i) pLS20+ strains, but not pLS20- strains, functioned as donors of pBC16; (ii) plasmid transfer was insensitive to the presence of DNase; and (iii) cell-free filtrates of donor cultures did not convert recipient cells to Tcr. Cotransfer of pLS20 and pBC16 in intraspecies matings and in matings with a restriction-deficient B. subtilis strain indicated that pLS20 was self-transmissible. In addition to mobilizing pBC16, pLS20 mediated transfer of the B. subtilis (natto) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. The fertility plasmid did not carry a selectable marker. To facilitate direct selection for pLS20 transfer, plasmid derivatives which carried the erythromycin resistance transposon Tn917 were generated. Development of this method of genetic exchange will facilitate the introduction of plasmid DNA into nontransformable species by use of transformable fertile B. subtilis or B. subtilis (natto) strains as intermediates.  相似文献   

16.
Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD+ or NADP+ as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP+ was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.  相似文献   

17.
Biofilms are natural forms of cell immobilization in which microorganisms attach to solid supports. At ISU, we have developed plastic composite-supports (PCS) (agricultural material (soybean hulls or oat hulls), complex nutrients, and polypropylene) which stimulate biofilm formation and which supply nutrients to the attached microorganisms. Various PCS blends were initially evaluated in repeated-batch culture-tube fermentation with Saccharomyces cerevisiae (ATCC 24859) in low organic nitrogen medium. The selected PCS (40% soybean hull, 5% soybean flour, 5% yeast extract-salt and 50% polypropylene) was then used in continuous and repeated-batch fermentation in various media containing lowered nitrogen content with selected PCS. During continuous fermentation, S. cerevisiae demonstrated two to 10 times higher ethanol production in PCS bioreactors than polypropylene-alone support (PPS) control. S. cerevisiae produced 30 g L−1 ethanol on PCS with ammonium sulfate medium in repeated batch fermentation, whereas PPS-control produced 5 g L−1 ethanol. Overall, increased productivity in low cost medium can be achieved beyond conventional fermentations using this novel bioreactor design. Received 20 May 1997/ Accepted in revised form 29 August 1997  相似文献   

18.
To investigate the immunomodulatory effects of Bacillus subtilis (B. subtilis) (natto) B4 spores on murine macrophage, RAW 264.7 cells were cultured alone or with B subtilis (natto) B4 spores at 37°C for 12 hrs, then both cells and culture supernatants were collected for analyses. Exposure of RAW 264.7 cells to B. subtilis (natto) B4 spores had no significant effects on macrophage viability and amounts of extracellular lactate dehydrogenase (LDH). However, it remarkably increased the activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and inducible nitric oxide synthase (iNOS) in cells and the amounts of nitric oxide (NO) and cytokines (tumor necrosis factor‐alpha, interferon‐gamma, interleukin [IL]‐1 beta, IL‐6, IL‐12, IL‐10 and macrophage inflammatory protein‐2) in culture supernatants. These results demonstrate that B. subtilis (natto) B4 spores are harmless to murine macrophages and can stimulate their activation through up‐regulation of ACP and LDH activities and enhance their immune function by increasing iNOS activity and stimulating NO and cytokine production. The above findings suggest that B. subtilis (natto) B4 spores have immunomodulatory effects on macrophages.  相似文献   

19.
阐述了用经过物理和化学诱变后,筛选得到的纳豆芽孢杆菌发酵生产维生素K2的方法,VK2的生物合成途径以及分子生物学机制,并简要介绍了VK2的临床应用。为进一步研究与开发VK2提供理论依据。  相似文献   

20.
Wang CL  Ng TB  Yuan F  Liu ZK  Liu F 《Peptides》2007,28(7):1344-1350
A new cyclic lipopeptide (CLP) purified from Bacillus subtilis natto T-2 dose dependently inhibited growth in human leukemia K562 cells. The results of fluorescent staining indicated that CLP brought about apoptosis in K562 cells. Flow cytometric analysis also demonstrated that CLP caused dose-dependent apoptosis of K562 cells through cell arrest at G1 phase. Western blotting revealed that CLP-induced apoptosis in K562 cells was associated with caspase-3 and poly(ADP-ribose)polymerase (PARP) protein. It is estimated that CLP inhibited proliferation in K562 cells by inducing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号