首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of consistent individual differences in behaviour (‘animal personality’) has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold–shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the ‘phenotypic compensation’ hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the ‘phenotypic compensation’ hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals.  相似文献   

2.
Individuals of the same species differ consistently in risky actions. Such ‘animal personality’ variation is intriguing because behavioural flexibility is often assumed to be the norm. Recent theory predicts that between-individual differences in propensity to take risks should evolve if individuals differ in future fitness expectations: individuals with high long-term fitness expectations (i.e. that have much to lose) should behave consistently more cautious than individuals with lower expectations. Consequently, any manipulation of future fitness expectations should result in within-individual changes in risky behaviour in the direction predicted by this adaptive theory. We tested this prediction and confirmed experimentally that individuals indeed adjust their ‘exploration behaviour’, a proxy for risk-taking behaviour, to their future fitness expectations. We show for wild great tits (Parus major) that individuals with experimentally decreased survival probability become faster explorers (i.e. increase risk-taking behaviour) compared to individuals with increased survival probability. We also show, using quantitative genetics approaches, that non-genetic effects (i.e. permanent environment effects) underpin adaptive personality variation in this species. This study thereby confirms a key prediction of adaptive personality theory based on life-history trade-offs, and implies that selection may indeed favour the evolution of personalities in situations where individuals differ in future fitness expectations.  相似文献   

3.
Impacts of individual personality on group distribution were investigated using sheep (Ovis aries) as a model. In an indoor exploration test, individuals who visited <4 (out of 6) objects in a novel environment were classified as ‘shy’ (n = 10), and those who visited 5 or 6 objects were classified as ‘bold’ (n = 10). Nine weeks later, using a series of groups (n = 40) of either 5 shy or 5 bold sheep, we measured distribution at pasture and responses to disturbance and the approach of a human handler. When grazing undisturbed, the mean nearest neighbour distance and spread (minimum convex hull area) of shy groups were less than those of bold groups, with shy individuals moving towards one another more often. Shy groups explored a smaller area than bold groups. When disturbed, shy sheep were more likely to stop grazing and move closer together. Shy sheep kept further away from the handler and moved faster when driven. The results demonstrate a link between personality and group distribution, suggesting that our ‘shy’ and ‘bold’ individuals may occupy different positions on the shy-bold continuum documented for other species. We discuss implications for diet composition and impacts on vegetation grazed by animals with different personalities.  相似文献   

4.
Despite increasing interest, animal personality is still a puzzling phenomenon. Several theoretical models have been proposed to explain intraindividual consistency and interindividual variation in behaviour, which have been primarily supported by qualitative data and simulations. Using an empirical approach, I tested predictions of one main life-history hypothesis, which posits that consistent individual differences in behaviour are favoured by a trade-off between current and future reproduction. Data on life-history were collected for individuals of a natural population of grey mouse lemurs (Microcebus murinus). Using open-field and novel-object tests, I quantified variation in activity, exploration and boldness for 117 individuals over 3 years. I found systematic variation in boldness between individuals of different residual reproductive value. Young males with low current but high expected future fitness were less bold than older males with high current fecundity, and males might increase in boldness with age. Females have low variation in assets and in boldness with age. Body condition was not related to boldness and only explained marginal variation in exploration. Overall, these data indicate that a trade-off between current and future reproduction might maintain personality variation in mouse lemurs, and thus provide empirical support of this life-history trade-off hypothesis.  相似文献   

5.
Individual organisms vary in personality, and the ecological consequences of that variation can affect the strength of predator–prey interactions. Prey with bolder tendencies can mitigate the strength of species interactions by altering growth and initiating ontogenetic niche shifts (ONS). While the link between personality and growth has been established, recent research has highlighted the important interplay between ONS and predator cues in community ecology. The objective of this study was to evaluate the effects of prey personality and predator cues on prey growth and ONS. We predicted growth–mortality trade-offs among personalities with higher survival, larger size, and accelerated ONS for bold individuals in comparison with shy individuals. To evaluate this objective, we conducted behavioral assays and a mesocosm experiment to test how southern leopard frog (Rana sphenocephala) tadpole personality and predatory fish (bluegill, Lepomis macrochirus) cues affects tadpole growth and metamorphosis. On average, bold tadpoles had higher mortality across all treatments in comparison with shy tadpoles. The effects of fish cues were dependent on tadpole personality with shy tadpoles metamorphosing significantly later than bold tadpoles. Bold tadpoles were larger than shy tadpoles at metamorphosis; however, that pattern reversed with fish cues as shy individuals metamorphosed larger than bold individuals. Our results suggest personality may be useful for predicting growth and life history for some prey species with predators. Specifically, the threat of predation can interact with personality to incur a benefit (earlier ONS) while also incurring a cost (size at metamorphosis). Hence by incorporating predator cues with personality, ecologists will be able to elucidate growth–mortality trade-offs mediated by personality.  相似文献   

6.
Individuals of a population may vary along a pace‐of‐life syndrome from highly fecund, short‐lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long‐lived, shy, plastic “slow” types at the other end. Risk‐taking behavior might mediate the underlying life history trade‐off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed‐sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex‐boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near‐natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter‐ and intra‐annual fluctuations in population density in the study species and its short life span, density‐dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace‐of‐life.  相似文献   

7.
According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t) are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+). As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.  相似文献   

8.
Individual variation in behavioural traits (including responses to social cues) may influence the success of invasive populations. We studied the relationship between sociality and personality in invasive cane toads (Rhinella marina) from a recently established population in tropical Australia. In our field experiments, we manipulated social cues (the presence of a feeding conspecific) near a food source. We captured and compared toads that only approached feeding sites where another toad was already present, with conspecifics that approached unoccupied feeding sites. Subsequent laboratory trials showed correlated personality differences (behavioural syndromes) between these two groups of toads. For example, toads that approached already-occupied rather than unoccupied feeding sites in the field, took longer to emerge from a shelter-site in standardized trials, suggesting these individuals are ‘shy’ (whereas toads that approached unoccupied feeding stations tended to be ‘bold’). Manipulating hunger levels did not abolish this difference. In feeding trials, a bold toad typically outcompeted a shy toad under conditions of low prey availability, but the outcome was reversed when multiple prey items were present. Thus, both personality types may be favored under different circumstances. This invasive population of toads contains individuals that exhibit a range of personalities, hinting at the existence of a wide range of social dynamics in taxa traditionally considered to be asocial.  相似文献   

9.
There is a growing awareness of the influence of mitochondrial genetic variation on life-history phenotypes, particularly via epistatic interactions with nuclear genes. Owing to their direct effect on traits such as metabolic and growth rates, mitonuclear interactions may also affect variation in behavioural types or personalities (i.e. behavioural variation that is consistent within individuals, but differs among individuals). However, this possibility is largely unexplored. We used mitonuclear introgression lines, where three mitochondrial genomes were introgressed into three nuclear genetic backgrounds, to disentangle genetic effects on behavioural variation in a seed beetle. We found within-individual consistency in a suite of activity-related behaviours, providing evidence for variation in personality. Composite measures of overall activity of individuals in behavioural assays were influenced by both nuclear genetic variation and by the interaction between nuclear and mitochondrial genomes. More importantly, the degree of expression of behavioural and life-history phenotypes was correlated and mitonuclear genetic variation affected expression of these concerted phenotypes. These results show that mitonuclear genetic variation affects both behavioural and life-history traits, and they provide novel insights into the maintenance of genetic variation in behaviour and personality.  相似文献   

10.
Animal personalities range from individuals that are shy, cautious, and easily stressed (a “reactive” personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a “proactive” personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large‐ and small‐brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large‐brained animals were faster to habituate to, and more exploratory in, open field tests. Large‐brained females were also bolder. Second, large‐brained animals excreted less cortisol in a stressful situation (confinement). Third, large‐brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large‐brained lines. Overall, the results point toward a more proactive personality type in large‐brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness‐related aspects of ecology such as dispersal and niche exploration.  相似文献   

11.
Animal personalities are by definition stable over time, but to what extent they may change during development and in adulthood to adjust to environmental change is unclear. Animals of temperate environments have evolved physiological and behavioural adaptations to cope with the cyclic seasonal changes. This may also result in changes in personality: suites of behavioural and physiological traits that vary consistently among individuals. Winter, typically the adverse season challenging survival, may require individuals to have shy/cautious personality, whereas during summer, energetically favourable to reproduction, individuals may benefit from a bold/risk‐taking personality. To test the effects of seasonal changes in early life and in adulthood on behaviours (activity, exploration and anxiety), body mass and stress response, we manipulated the photoperiod and quality of food in two experiments to simulate the conditions of winter and summer. We used the common voles (Microtus arvalis) as they have been shown to display personality based on behavioural consistency over time and contexts. Summer‐born voles allocated to winter conditions at weaning had lower body mass, a higher corticosterone increase after stress and a less active, more cautious behavioural phenotype in adulthood compared to voles born in and allocated to summer conditions. In contrast, adult females only showed plasticity in stress‐induced corticosterone levels, which were higher in the animals that were transferred to the winter conditions than to those staying in summer conditions. These results suggest a sensitive period for season‐related behavioural plasticity in which juveniles shift over the bold–shy axis.  相似文献   

12.
The composition of an animal group can impact greatly on thesurvival and success of its individual members. Much recentwork has concentrated on behavioral variation within animalpopulations along the bold/shy continuum. Here, we screenedindividual guppies, Poecilia reticulata, for boldness usingan overhead fright stimulus. We created groups consisting of4 bold individuals (bold shoals), 4 shy individuals (shy shoals),or 2 bold and 2 shy individuals (mixed shoals). The performanceof these different shoal types was then tested in a novel foragingscenario. We found that both bold and mixed shoals approacheda novel feeder in less time than shy shoals. Interestingly,we found that more fish from mixed shoals fed than in eitherbold or shy shoals. We suggest that this can be explained bythe fact that nearly all the cases where one fish was followedinto the feeder by another occurred within mixed shoals andthat it was almost always a shy fish following a bold one. Theseresults suggest clear foraging benefits to shy individuals throughassociating with bold ones. Surprisingly, our results also suggestpotential foraging benefits to bold individuals through associatingwith shy individuals. This study highlights a possible mechanismby which interindividual variation in behavioral types is maintainedin a population.  相似文献   

13.
Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey''s lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences.  相似文献   

14.
Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magnaPasteuria ramosa host–parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems.  相似文献   

15.
Along the North American Pacific coast, the common intertidal sea anemone Anthopleura elegantissima engages in facultative, flexible symbioses with Symbiodinium muscatinei (a dinoflagellate) and Elliptochloris marina (a chlorophyte). Determining how symbiotic state affects host fitness is essential to understanding the ecological significance of engaging in such flexible relationships with diverse symbionts. Fitness consequences of hosting S. muscatinei, E. marina or negligible numbers of either symbiont (aposymbiosis) were investigated by measuring growth, cloning by fission and gonad development after 8.5–11 months of sustained exposure to high, moderate or low irradiance under seasonal environmental conditions. Both symbiotic state and irradiance affected host fitness, leading to divergent life-history strategies. Moderate and high irradiances led to a greater level of gonad development in individuals hosting E. marina, while high irradiance and high summer temperature promoted cloning in individuals hosting S. muscatinei and reduced fitness of aposymbiotic anemones. Associating with S. muscatinei may contribute to the success of A. elegantissima as a spatial competitor on the high shore: (i) by offsetting the costs of living under high temperature and irradiance conditions, and (ii) by promoting a high fission rate and clonal expansion. Our results suggest that basic life-history characteristics of a clonal cnidarian can be affected by the identity of the endosymbionts it hosts.  相似文献   

16.
The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘C-value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.  相似文献   

17.
There is increasing evidence that animal groups can maintain coordinated behaviour and make collective decisions based on simple interaction rules. Effective collective action may be further facilitated by individual variation within groups, particularly through leader–follower polymorphisms. Recent studies have suggested that individual-level personality traits influence the degree to which individuals use social information, are attracted to conspecifics, or act as leaders/followers. However, evidence is equivocal and largely limited to laboratory studies. We use an automated data-collection system to conduct an experiment testing the relationship between personality and collective decision-making in the wild. First, we report that foraging flocks of great tits (Parus major) show strikingly synchronous behaviour. A predictive model of collective decision-making replicates patterns well, suggesting simple interaction rules are sufficient to explain the observed social behaviour. Second, within groups, individuals with more reactive personalities behave more collectively, moving to within-flock areas of higher density. By contrast, proactive individuals tend to move to and feed at spatial periphery of flocks. Finally, comparing alternative simulations of flocking with empirical data, we demonstrate that variation in personality promotes within-patch movement while maintaining group cohesion. Our results illustrate the importance of incorporating individual variability in models of social behaviour.  相似文献   

18.
Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 ‘average’ spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.  相似文献   

19.
This study examines the impact of boldness on foraging competition of the highly invasive round goby Neogobius melanostomus Pallas 1815. Individual risk tolerance, or boldness, was measured as the time to resume movement after a simulated predation strike. Fish that resumed movement faster were categorized as “bold,” fish that took more time to resume movement were categorized as “shy” and those that fell in between these two categories were determined to have “intermediate” boldness. Competitive impacts of boldness in N. melanostomus were determined in a laboratory foraging experiment in which interspecific (juvenile Atlantic cod Gadus morhua Linnaeus 1758) and intraspecific (intermediate N. melanostomus) individuals were exposed to either bold or shy N. melanostomus competitors. G. morhua consumed fewer prey when competing with bold N. melanostomus than when competing with shy N. melanostomus, whereas intermediately bold N. melanostomus foraging was not affected by competitor boldness. Bold and shy N. melanostomus consumed similar amounts of prey, and the number of interactions between paired fish did not vary depending on the personality of N. melanostomus individuals. Therefore, intraspecific foraging competition was not found to be personality dependent. This study provides evidence that individual differences in boldness can mediate competitive interactions in N. melanostomus; nonetheless, results also show that competition is also governed by other mechanisms that require further study.  相似文献   

20.
Costs of reproduction are expected to be ubiquitous in wild animal populations and understanding the drivers of variation in these costs is an important aspect of life-history evolution theory. We use a 43 year dataset from a wild population of red deer to examine the relative importance of two factors that influence the costs of reproduction to mothers, and to test whether these costs vary with changing ecological conditions. Like previous studies, our analyses indicate fitness costs of lactation: mothers whose calves survived the summer subsequently showed lower survival and fecundity than those whose calves died soon after birth, accounting for 5% and 14% of the variation in mothers'' survival and fecundity, respectively. The production of a male calf depressed maternal survival and fecundity more than production of a female, but accounted for less than 1% of the variation in either fitness component. There was no evidence for any change in the effect of calf survival or sex with increasing population density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号