首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m3/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m3/day at a nitrogen loading rate of 1.0 kg-N/m3/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m3/day at a nitrogen loading rate of 0.93 kg-N/m3/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5–6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.  相似文献   

2.
Energy-positive sewage treatment can, in principle, be obtained by maximizing energy recovery from concentrated organics and by minimizing energy consumption for concentration and residual nitrogen removal in the main stream. To test the feasibility of the latter, sewage-like nitrogen influent concentrations were treated with oxygen-limited autotrophic nitrification/denitrification (OLAND) in a lab-scale rotating biological contactor at 25°C. At influent ammonium concentrations of 66 and 29 mg N L−1 and a volumetric loading rate of 840 mg N L−1 day−1 yielding hydraulic residence times (HRT) of 2.0 and 1.0 h, respectively, relatively high nitrogen removal rates of 444 and 383 mg N L−1 day−1 were obtained, respectively. At low nitrogen levels, adapted nitritation and anammox communities were established. The decrease in nitrogen removal was due to decreased anammox and increased nitratation, with Nitrospira representing 6% of the biofilm. The latter likely occurred given the absence of dissolved oxygen (DO) control, since decreasing the DO concentration from 1.4 to 1.2 mg O2 L−1 decreased nitratation by 35% and increased anammox by 32%. Provided a sufficient suppression of nitratation, this study showed the feasibility of OLAND to treat low nitrogen levels at low HRT, a prerequisite to energy-positive sewage treatment.  相似文献   

3.
A bioreactor system with 30 packed gel envelopes was installed in a thermal power plant for the removal of nitrogen from ammonia-containing desulfurization wastewater. Each envelope consisted of double-sided plate gels containing Nitrosomonas europaea and Paracoccus denitrificans cells with an internal space in between for injecting an electron donor. The envelope can remove ammonia from wastewater in a single step. When the wastewater was continuously treated with the bioreactor system, it removed 95.0% of the total nitrogen in the inlet, and the total nitrogen concentration in the outlet was below 9.0 mg L−1. The maximum nitrogen removal rate was 6.0 g day−1 per square meter of the gel area. The maximum utilization efficiency of the injected ethanol for denitrification was 98.4%, and the total organic carbon concentration in the outflow was maintained at a low level. Since the bioreactor system could use the electron donor effectively, it was not necessary to use an additional aerobic tank to remove the electron donor and a settling tank to segregate the surplus sludge containing bacteria from wastewater. Our concept of using packed gel envelopes would be highly effective for constructing a simple and efficient nitrogen removal system capable of simultaneous nitrification and denitrification.  相似文献   

4.
Due to variations in the production levels, a full-scale sequencing batch reactor (SBR) for post-treatment of tannery wastewater was exposed to low and high ammonia load periods. In order to study how these changes affected the N-removal capacity, the microbiology of the reactor was studied by a diverse set of techniques including molecular tools, activity tests, and microbial counts in samples taken along 3 years. The recover capacity of the biomass was also studied in a lab-scale reactor operated with intermittent aeration without feeding for 36 days. The results showed that changes in the feeding negatively affected the nitrifying community, but the nitrogen removal efficiencies could be restored after the concentration stress. Species substitution was observed within the nitrifying bacteria, Nitrosomonas europaea and Nitrobacter predominated initially, and after an ammonia overload period, Nitrosomonas nitrosa and Nitrospira became dominant. Some denitrifiers, with nirS related to Alicycliphilus, Azospirillum, and Marinobacter nirS, persisted during long-term reactor operation, but the community fluctuated both in composition and in abundance. This fluctuating community may better resist the continuous changes in the feeding regime. Our results showed that a nitrifying–denitrifying SBR could be operated with low loads or even without feeding during production shut down periods.  相似文献   

5.
The coupled system of partial nitrification and anaerobic ammonium oxidation (Anammox) is efficient in nitrogen removal from wastewater. In this study, the effect of different oxygen concentrations on partial nitrification performance with a sequencing batch reactor (SBR) was investigated. Results indicate that, partial nitrification of landfill leachate could be successfully achieved under the 1.0–2.0 mg L−1 dissolved oxygen (DO) condition after 118 d long-term operation, and that the effluent is suitable for an Anammox reactor. Further decreasing or increasing the DO concentration, however, would lead to a decay of nitrification performance. Additionally, the MLSS concentration in the reactor increased with increasing DO concentration. Respirometric assays suggest that low DO conditions (<2 mg L−1) favor the ammonia-oxidizing bacteria (AOB) and significantly inhibit nitrite oxidizing bacteria (NOB) and aerobic heterotrophic bacteria (AHB); whereas high DO conditions (>3 mg L−1) allow AHB to dominate and significantly inhibit AOB. Therefore, the optimal condition for partial nitrification of landfill leachate is 1.0–2.0 mg L−1 DO concentration.  相似文献   

6.
In this study, combination of a partial nitritation reactor, using immobilized polyethylene glycol (PEG) gel carriers, and a continuous stirred granular anammox reactor was investigated for nitrogen removal from livestock manure digester liquor. Successful nitrite accumulation in the partial nitritation reactor was observed as the nitrite production rate reached 2.1 kg-N/m3/day under aerobic nitrogen loading rate of 3.8 kg-N/m3/day. Simultaneously, relatively high free ammonia concentrations (average 50 mg-NH3/l) depressed the activity of nitrite oxidizing bacteria with nitrate concentration never exceeding 3% of TN concentration in the effluent of the partial nitritation reactor (maximum 35.2 mg/l). High nitrogen removal rates were achieved in the granular anammox reactor with the highest removal rate being 3.12 kg-N/m3/day under anaerobic nitrogen loading rate of 4.1 kg-N/m3/day. Recalcitrant organic compounds in the digester liquor did not impair anammox reaction and the SS accumulation in the granular anammox reactor was minimal. The results of this study demonstrated that partial nitritation–anammox combination has the potential to successfully remove nitrogen from livestock manure digester liquor.  相似文献   

7.
Dissolved oxygen (DO) is an important parameter for partial nitritation-anammox process but previously not evaluated for the treatment of digested biosolid thickening lagoon supernatant. Using intermittent aeration we investigated nitrogen removal from such supernatant in an integrated fixed film activated sludge (IFAS) process operated under a variety of hydraulic retention times (1.2–2.5 days). The overall nitrogen removal rate (NRR) was significantly increased (P < 0.01) from 0.26 ± 0.01 kg N m−3 d-1 at HRT of 2.5 days to 0.50 ± 0.01 kg N m-3 d-1 at HRT of 1.2 day. Higher nitrogen loading rates needed higher DO concentrations in order to cope with the increased oxygen demand by ammonium-oxidizing bacteria (AOB). Enhancing the DO concentration from 0.18 mg L-1 to 0.35 mg L-1 improved AOB activity. However, when the bulk liquid DO was in the range of 0.28−0.35 mg L-1, anammox activity inhibition was observed associated with a significant free nitrous acid (FNA) accumulation (21.70 ± 4.10 μg L-1). Batch studies confirmed the inhibition of anammox activity under high DO conditions (0.28−0.35 mg L-1). Aeration strategies, other than increasing the DO set points, should be investigated in order to be able to work at high nitrogen loading rates without compromising anammox activity.  相似文献   

8.
Gui  Mengyao  Chen  Qian  Ma  Tao  Zheng  Maosheng  Ni  Jinren 《Applied microbiology and biotechnology》2017,101(4):1717-1727

Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L−1 h−1), higher nitrite accumulation (47.3∼99.8 mg L−1), and higher N2O emission ratios (5∼283 mg L−1/mg L−1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L−1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L−1) > Cu(II) (0.5∼5 mg L−1) > Ni(II) (2∼10 mg L−1) > Zn(II) (25∼50 mg L−1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  相似文献   

9.
A laboratory scale experiment was described in this paper to enhance biological nitrogen removal by simultaneous nitrification and denitrification (SND) via nitrite with a sequencing batch biofilm reactor (SBBR). Under conditions of total nitrogen (TN) about 30 mg/L and pH ranged 7.15–7.62, synthetic wastewater was cyclically operated within the reactor for 110 days. Optimal operation conditions were established to obtain consistently high TN removal rate and nitrite accumulation ratio, which included an optimal temperature of 31 °C and an aeration time of 5 h under the air flow of 50 L/h. Stable nitrite accumulation could be realized under different temperatures and the nitrite accumulation ratio increased with an increase of temperature from 15 to 35 °C. The highest TN removal rate (91.9%) was at 31 °C with DO ranged 3–4 mg/L. Process control could be achieved by observing changes in DO and pH to judge the end-point of oxidation of ammonia and SND.  相似文献   

10.
Anammox process has attracted considerable attention in the recent years as an alternative to conventional nitrogen removal technologies. In this study, a column type reactor using a novel net type acrylic fiber (Biofix) support material was used for anammox treatment. The Biofix reactor was operated at a temperature of 25°C (peak summer temperature, 31.5°C). During more than 340 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m3/d with TN removal efficiencies reaching 81.3%. When the reactor was used for raw anaerobic sludge digester liquor treatment, an average TN removal efficiency of 72% was obtained with highest removal efficiency of 81.6% at a nitrogen loading rate of 2.2 kg-N/m3/d. Results of extracellular polymeric substances (EPS) quantification revealed that protein was the most abundant component in the granular sludge and was found to be almost twice than that in the sludge attached to the biomass carriers. The anammox granules in the Biofix reactor illustrated a dense morphology substantiated by scanning electron microscopy and EPS results. The results of DNA analyses indicated that the anammox strain KSU-1 might prefer relatively low nutrient levels, while the anammox strain KU2 strain might be better suited at high nutrient concentration. Other types of bacteria were also identified with the potential of consuming dissolved oxygen in the influent and facilitating survival of anammox bacteria under aerobic conditions.  相似文献   

11.
Liu  Junhua  Wang  Jingmin  Zhao  Congcong  Liu  Jianing  Xie  Huijun  Wang  Shuning  Zhang  Jian  Hu  Zhen 《Applied microbiology and biotechnology》2017,101(4):1653-1660

Wastewater treatment under low dissolved oxygen (DO) conditions is promising for its low energy consumption. However, the removal process of some organic micropollutants, such as triclosan (TCS), could be inhibited under anaerobic conditions. So, it is worth investigating the TCS removal performance at low-oxygen condition. In this study, simultaneous nitrification and denitrification (SND) process, with DO ranging from 0.30 to 0.80 mg L−1, was chosen to investigate. Results showed that the water quality of the effluent was deteriorated after TCS addition at the beginning, with removal efficiency of NH4 +-N dropped from almost 100 ± 0.70 to 88.30 ± 0.98% and COD decreased from 95.15 ± 1.55 to 65.81 ± 2.42 %. However, the performance recovered from the 3rd day and almost stabilized on the 14th day with the removal efficiencies of NH4 +-N were over 98.00 ± 0.60 %, and COD was above 94.00 ± 1.70 % in effluent. Besides, TCS removal efficiencies were more than 93.00 %, and the contributions for TCS removal by the water effluent, sludge sorption, and other effects including biodegradation were 6.46 ± 2.25, 16.27 ± 3.30, and 77.27 ± 4.45 %, respectively. Although the results of absolute abundances of related genes showed no difference (P > 0.05), Illumina MiSeq sequencing analysis presented the variation of microbial community after TCS addition, in which T-45 had the highest Shannon and Simpson diversity index, followed by T-0 and T-2. Relative abundances of alpha and beta-Proteobacteria, which were related to TCS biodegradation, were increased. Compared with Bacteroidetes in T-0, the abundance of Bacteroidetes took up more than 15.6 % in T-45, which should play a more important role under low-oxygen conditions with TCS addition.

  相似文献   

12.
A pilot plant involving a nitritation-anammox process was operated for treating digester supernatant. In the preceding nitritation process, ammonium-oxidizing bacteria were immobilized in gel carriers, and the growth of nitrite-oxidizing bacteria was suppressed by heat-shock treatment. For the following anammox process, in order to maintain the anammox biomass in the reactor, a novel process using anammox bacteria entrapped in gel carriers was also developed. The nitritation performance was stable, and the average nitrogen loading and nitritation rates were 3.0 and 1.7 kg N m−3 d−1, respectively. In the nitritation process, nitrate production was completely suppressed. For the anammox process, the startup time was about two months. Stable nitrogen removal was achieved, and an average nitrogen conversion rate of 5.0 kg N m−3 d−1 was obtained. Since the anammox bacteria were entrapped in gel carriers, stable nitrogen removal performance was attained even at an influent suspended solids concentration of 1500 mg L−1.  相似文献   

13.
Ni SQ  Gao BY  Wang CC  Lin JG  Sung S 《Bioresource technology》2011,102(3):2448-2454
The possibility to introduce the exotic anammox sludge to seed the pilot-scale anammox granular reactor and its fast start-up for treating high nitrogen concentration wastewater were evaluated in this study. The reactor was started up successfully in two weeks; in addition, high nitrogen removal was achieved for a long period. Stoichiometry molar ratios of nitrite conversion and nitrate production to ammonium conversion were calculated to be 1.26 ± 0.02:1 and 0.26 ± 0.01:1, respectively. The Stover-Kincannon model which was first applied in granular anammox process indicated that the granular anammox reactor possessed high nitrogen removal potential of 27.8 kg/m3/d. The anammox granules in the reactor were characterized via microscope observation and fluorescence in situ hybridization technique. Moreover, the microbial community of the granules was quantified to be composed of 91.4-92.4% anammox bacteria by real-time polymerase chain reaction. This pilot study can elucidate further information for industrial granular anammox application.  相似文献   

14.
This paper presents the results of a bench-scale biotrickling filter (BTF) on the removal of ammonia gas from a waste stream using a simultaneous nitrification/denitrification (SND) process. It was found that the developed BTF could completely remove 100 ppm ammonia from a waste stream, with an empty bed retention time of 60 s and 98.4% nitrogen removal through the SND process under the tested conditions. It was elucidated that both autotrophic and heterotrophic bacteria were involved in the nitrogen removal trough the SND process in the BTF. Additionally, the elimination capacity of total nitrogen by the BTF increased from 3.5 to 18.4 g N/m3 h with an inlet load of 20.6 g N/m3 h (73.6%). The findings of this study suggest that the BTF can be operated to attain complete ammonia removal through the SND process, thereby making the treatment of ammonia-laden gas streams both short and cost-effective.  相似文献   

15.
Poultry manure contains high levels of ammonia, which result in a suboptimal bioconversion to methane in anaerobic digesters (AD). A simultaneous process of nitrification, Anammox and denitrification (SNAD) in a continuous granular bubble column reactor to treat the anaerobically digested poultry manure was implemented. Thus, two strategies to achieve high efficiencies were proposed in this study: (1) ammonia overload to suppress nitrite oxidizing bacteria (NOB) and (2) gradual adaptation of the partial nitrification–Anammox (PN–A) biomass to organic matter. During the NOB-suppression stage, microbial and physical biomass characterizations were performed and the NOB abundance decreased from 31.3% to 3.3%. During the adaptation stage, with a nitrogen loading rate of 0.34 g L−1 d−1, a hydraulic retention time of 1.24 d and an influent COD/N ratio of 2.63 ± 0.02, a maximum ammonia and total nitrogen removal of 100% and 91.68% were achieved, respectively. The relative abundances of the aerobic and the anaerobic ammonia-oxidizing bacteria were greater than 35% and 40% respectively, during the study. These strategies provided useful design tools for the efficient removal of nitrogen species in the presence of organic matter.  相似文献   

16.

In this study, soil samples from the typical rice-wheat cropping system in Jiangsu Province, China, subjected to different fertilizer application treatments―no carbon (CK), urea (UR), straw (SR), pig manure (PM), starch (ST), and glucose (GL)―were used to determine potential anaerobic ammonium oxidation (anammox) rate and its association with bacterial abundance, diversity, and activity by using DNA stable isotope probing combined with 15N isotope tracing and molecular techniques. The effects of different organic carbon sources on anammox were significant, in the following order: GL > ST, SR > UR > PM; anammox activity differed significantly across treatments; however, the 13C active anammox bacteria were only closely related to Ca. Brocadia. The anammox hydrazine synthase β subunit functional gene sequences were highly associated with the Candidatus genus Brocadia in PM and CK treatments. The different organic carbon sources had different inhibitory effects with anammox rate, which dropped from 3.19 to 1.04 nmol dinitrogen gas g−1 dry soil h−1 among treatments. About 4.2–22.3% of dinitrogen gas emissions were attributed to anammox and indicated that a specific population of anammox bacteria was present and varied with the addition of exogenous organic compounds in paddy soils, although a small part of dinitrogen gas was emitted from the soil via anammox.

  相似文献   

17.
短程硝化(partial nitrification, PN)是一种绿色低碳的生物脱氮创新技术,伴随厌氧氨氧化(anaerobic ammonia oxidation, Anammox)污水脱氮技术的进一步推广,短程硝化作为提供其电子受体的重要环节,已成为了污水脱氮领域的研究热点。氨氧化菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria, NOB)是该技术的核心竞争微生物,掌握这两类微生物的生态学特征,借助生态学理论和手段调控AOB淘汰NOB,提高种群的可预测性,对于实现稳定高效的短程硝化具有重要意义。本文基于生态学角度介绍了AOB和NOB基础分类、生理性能及生态位分离,重点综述了短程硝化系统中AOB和NOB的生长动力学、群落构建、环境因素和相互作用,最后对这两类微生物的未来研究重点和研究方法进行了展望,为短程硝化工艺的快速启动和稳定运行提供理论指导。  相似文献   

18.
Response surface methodology (RSM) using central composite design was applied to obtain the optimal dissolved oxygen (DO) and nitrogen (N) concentrations for biodegrading MTBE (Methyl tert-butyl ether) and BTEX (benzene, ethylbenzene, toluene, p-xylene). Moreover, the effects of DO, N, and their interaction on the degradation process were evaluated. It was found that N, N2, DO and DO2 have significant effects on the efficiency of MTBE and BTEX removal. The removal efficiency when using biostimulation with bioaugmentation (BwB) is higher than with other processes, being greater than 82% at concentrations of 12 and 48 mg l−1 for DO and N, respectively. However, it was also found that the interaction term of DO × N has no significant effect on the degradation processes.  相似文献   

19.
In this environmental-sample based study, rapid microbial-mediated degradation of 2,4,6-trinitrotoluene (TNT) contaminated soils is demonstrated by a novel strain, Achromobacter spanius STE 11. Complete removal of 100 mg L−1 TNT is achieved within only 20 h under aerobic conditions by the isolate. In this bio-conversion process, TNT is transformed to 2,4-dinitrotoluene (7 mg L−1), 2,6-dinitrotoluene (3 mg L−1), 4-aminodinitrotoluene (49 mg L−1) and 2-aminodinitrotoluene (16 mg L−1) as the key metabolites. A. spanius STE 11 has the ability to denitrate TNT in aerobic conditions as suggested by the dinitrotoluene and NO3 productions during the growth period. Elemental analysis results indicate that 24.77 mg L−1 nitrogen from TNT was accumulated in the cell biomass, showing that STE 11 can use TNT as its sole nitrogen source. TNT degradation was observed between pH 4.0–8.0 and 4–43 °C; however, the most efficient degradation was at pH 6.0–7.0 and 30 °C.  相似文献   

20.
The aeration of the cathode compartment of bioelectrochemical systems (BESs) was recently shown to promote simultaneous nitrification and denitrification (SND). This study investigates the cathodic metabolism under different operating conditions as well as the structural organization of the cathodic biofilm during SND. Results show that a maximal nitrogen removal efficiency of 86.9 ± 0.5%, and a removal rate of 3.39 ± 0.08 mg N L−1 h−1 could be achieved at a dissolved oxygen (DO) level of 5.73 ± 0.03 mg L−1 in the catholyte. The DO levels used in this study are higher than the thresholds previously reported as detrimental for denitrification. Analysis of the cathodic half-cell potential during batch tests suggested the existence of an oxygen gradient within the biofilm while performing SND. FISH analysis corroborated this finding revealing that the structure of the biofilm included an outer layer occupied by putative nitrifying organisms, and an inner layer where putative denitrifying organisms were most dominant. To our best knowledge this is the first time that nitrifying and denitrifying microorganisms are simultaneously observed in a cathodic biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号