首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
甲型流感病毒的RNA聚合酶由PB1、PB2和PA 三个亚基组成,在病毒的生命周期中负责行使病毒基因组的转录与复制等多方面功能. 甲型流感病毒由于频繁变异,导致其对传统抗病毒药物的敏感性降低,因此开发疗效好、针对性强、毒性低的新型抗病毒药物已成为当前亟待解决的问题.由于RNA聚合酶是甲型流感病毒生命周期重要的调控蛋白,并且编码聚合酶各亚基的基因序列具有高度保守性,故成为当前抗病毒药物的重要靶点.  相似文献   

3.
4.
5.
6.
Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.  相似文献   

7.
A型流感病毒是正粘病毒科成员,为单股负链分节段RNA病毒,全基因组由八个节段组成,分别编码八种结构蛋白(PB2、PB1、PA、HA、NP、NA、M1和M2)和两种非结构蛋白(NS1和NS2).核蛋白(NP)和RNA聚合酶复合体与病毒的八个RNA节段组成八个螺旋丝状的病毒核衣壳(RNP),核衣壳被双层类脂膜包裹,脂膜内为基质蛋白(M1)层,膜上镶嵌着HA、NA和M2三种膜蛋白.HA和NA为流感病毒的主要抗原.根据HA和NA抗原性的差异,A型流感病毒可分16个HA亚型和9个NA亚型[1].A型流感病毒具有广泛的宿主范围和超强的重组变异能力,对人类健康的威胁日趋严重,引起各国政府和科技工作者的广泛关注.研究RNA聚合酶的功能、揭示病毒复制和变异机理是目前抗流感病毒感染研究的热点之一.本文综述了流感病毒RNA聚合酶及其对病毒基因组复制和转录调控的研究进展.  相似文献   

8.
A型流感病毒是正粘病毒科成员,为单股负链分节段RNA病毒,全基因组由八个节段组成,分别编码八种结构蛋白(PB2、PB1、PA、HA、NP、NA、M1和M2)和两种非结构蛋白(NS1和NS2)。核蛋白(NP)和RNA聚合酶复合体与病毒的八个RNA节段组成八个螺旋丝状的病毒核衣壳(RNP),核衣壳被双层类脂膜包裹,脂膜内为基质蛋白(M1)层,膜上镶嵌着HA、NA和M2三种膜蛋白。HA和NA为流感病毒的主要抗原。根据HA和NA抗原性的差异,A型流感病毒可分16个HA亚型和9个NA亚型[1]。A型流感病毒具有广泛的宿主范围和超强的重组变异能力,对人类健康的威胁日趋…  相似文献   

9.
Abstract

Polyadenylic acid (poly A) and polyguanylic acid (poly G) have been modified to give polymers containing and Gpm5C termini. Polymers containing methylated (Gpmf C) termini are inactive as templates for the RNA-dependent RNA polymerase of Influenza A virus.  相似文献   

10.
All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.  相似文献   

11.
12.
Sphingosine 1-phosphate (S1P)-metabolizing enzymes regulate the level of sphingolipids and have important biological functions. However, the effects of S1P-metabolizing enzymes on host defense against invading viruses remain unknown. In this study, we investigated the role of S1P-metabolizing enzymes in modulating cellular responses to influenza virus infection. Overexpression of S1P lyase (SPL), which induces the degradation of S1P, interfered with the amplification of infectious influenza virus. Accordingly, SPL-overexpressing cells were much more resistant than control cells to the cytopathic effects caused by influenza virus infection. SPL-mediated inhibition of virus-induced cell death was supported by impairment of the upregulation of the proapoptotic protein Bax, a critical factor for influenza virus cytopathogenicity. Importantly, influenza virus infection of SPL-overexpressing cells induced rapid activation of extracellular signal-regulated kinase (ERK) and STAT1 but not of p38 mitogen-activated protein kinase (MAPK), Akt, or c-Jun N-terminal kinase (JNK). Blockade of STAT1 expression or inhibition of Janus kinase (JAK) activity elevated the level of influenza virus replication in the cells, indicating that SPL protects cells from influenza virus via the activation of JAK/STAT signaling. In contrast to that of SPL, the overexpression of S1P-producing sphingosine kinase 1 heightened the cells'' susceptibility to influenza virus infection, an effect that was reversed by the inhibition of its kinase activity, representing opposed enzymatic activity. These findings indicate that the modulation of S1P-metabolizing enzymes is crucial for controlling the host defense against infection with influenza virus. Thus, S1P-metabolizing enzymes are novel potential targets for the treatment of diseases caused by influenza virus infection.Influenza virus continues to threaten humans and remains a major worldwide health concern. Influenza virus causes an average of 36,000 deaths and 200,000 hospitalizations annually in the United States (50), imposing a significant economic burden (33). Further, there is fear of the recurrence of a devastating influenza pandemic similar to the Spanish influenza pandemic in 1918/1919, which killed as estimated 40 to 50 million people worldwide (34). Indeed, on 11 June 2009, the World Health Organization (WHO) declared the spread of the 2009 influenza A (H1N1) virus (initially known as swine flu virus) a global influenza pandemic (14, 45, 51). In addition, outbreaks of avian H5N1 influenza elevated vigilance against the occurrence of an influenza pandemic (4). A substantial number of circulating seasonal influenza viruses, as well as the avian H5N1 influenza virus with pandemic potential, were found to be resistant to antiviral drugs (10). Thus, identifying new therapeutic targets and understanding the mechanisms of host-virus interactions are important biomedical goals.Sphingolipids are bioactive lipid mediators characterized by the presence of a serine head group with one or two fatty acid tails (7, 44). One of the sphingolipids, sphingosine, and its downstream product sphingosine 1-phosphate (S1P), have emerged as the modulators of multiple cellular processes, such as cell growth, survival, differentiation, and migration, and have therapeutic potential. For instance, a sphingosine analog, FTY720, is a promising biomedical drug candidate that is currently being tested in phase III clinical trials for the treatment of multiple sclerosis (20). S1P, which is generated inside cells, can trigger intracellular signaling or is secreted to act as an exogenous lipid mediator stimulating S1P receptor-mediated signaling (44, 47).The level of S1P is tightly regulated by the S1P-metabolizing enzymes sphingosine kinase (SK) and S1P lyase (SPL). Its synthesis from sphingosine is catalyzed by SK, while SPL catalyzes the degradation of S1P to phosphoethanolamine and hexadecanal (46). These S1P-metabolizing enzymes were revealed to modulate diverse cellular stresses induced by anticancer drugs (30, 31), DNA damage (39), or serum deprivation (38, 43). Cells overexpressing SK1 displayed increased resistance to anticancer drugs such as cisplatin, carboplatin, and doxorubicin (30), whereas cells overexpressing SPL were more sensitive to drug-mediated cell death (31).Recently, the sphingosine analog AAL-R was shown to display immunomodulatory activity to alleviate influenza virus-induced immune pathology (27, 28). The phosphorylated analog acted directly on S1P receptors to regulate the expression of inflammatory cytokines, although it did not significantly alter influenza virus propagation (28). However, the role of intracellular S1P-metabolizing enzymes in host defensive mechanisms against influenza virus infection has not been studied.Here, we now show the contribution of the S1P-metabolizing enzymes SPL and SK1 to cellular responses to influenza virus infection. Overexpression of SPL interfered with influenza virus amplification and virus-induced cell death, with the early activation of STAT1 and extracellular signal-regulated kinase (ERK) molecules. Treatment with inhibitors blocking STAT1 expression or Janus kinase 1 (JAK1) activation increased influenza virus replication preferentially in SPL-overexpressing cells, demonstrating the importance of JAK/STAT signaling for SPL-mediated host defense. The suppression of influenza virus-induced cellular apoptosis by SPL was supported by the diminished expression of both the proapoptotic protein Bax and the cleaved product of poly(ADP-ribose) polymerase (PARP). In contrast, the overexpression of SK1 made cells more permissive to influenza virus infection, which was reversed by the inhibition of its kinase activity. Collectively, our results demonstrate that S1P-metabolizing enzymes regulate influenza virus propagation and represent novel therapeutic targets.  相似文献   

13.
14.
15.
16.
Nuclei purified from chicken embryo fibroblast cells infected with influenza (fowl plague) virus contain an RNA-dependent RNA polymerase. The in vitro activity of this enzyme is insensitive to actinomycin D, and is completely destroyed by preincubation with ribonuclease. Enzyme induction is prevented if cells are treated with actinomycin D or cycloheximide at the time of infection. RNA-dependent RNA polymerase activity increases rapidly in cell nuclei from 1 h postinfection, reaches a maximum at 3 to 4 h, then declines; a similar RNA polymerase activity in the microsomal cell fraction increases from 2 h postinfection and reaches a maximum at 5 to 6 h. The characteristics of the nuclear and microsomal enzymes in vitro are similar with respect to pH and divalent cation requirements. The in vitro products of enzyme activity present in the nuclear and microsomal fractions of cells infected for 3 and 5 h were characterized by sucrose density gradient analysis, and annealing to virion RNA. The microsomal RNA polymerase product contained 67 and 93% RNA complementary to virion RNA at 3 and 5 h, respectively; for the nuclear RNA polymerase product these values were 40% in each case.  相似文献   

17.
18.
19.
Most viruses possess strategies to circumvent host immune responses. The measles virus (MV) nonstructural C protein suppresses the interferon response, thereby allowing efficient viral growth, but its detailed mechanism has been unknown. We identified Shc Src homology 2 domain-binding protein 1 (SHCBP1) as one of the host proteins interacting with the C protein. Knockdown of SHCBP1 using a short-hairpin RNA greatly reduced MV growth. SHCBP1 was found to be required for viral RNA synthesis in the minigenome assay and to bind to the MV phosphoprotein, a subunit of the viral RNA polymerase. A stretch of 12 amino acid residues in the C protein were sufficient for SHCBP1 binding, and the peptide containing these 12 residues could suppress MV RNA synthesis, like the full-length C protein. The central region of SHCBP1 was found to bind to the C protein, as well as the phosphoprotein, but the two viral proteins did not compete for SHCBP1 binding. Our results indicate that the C protein modulates MV RNA polymerase activity by binding to the host protein SHCBP1. SHCBP1 may be exploited as a target of antiviral compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号