首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal recognition particle (SRP) and SRP receptor comprise the major cellular machinery that mediates the cotranslational targeting of proteins to cellular membranes. It remains unclear how the delivery of cargos to the target membrane is spatially coordinated. We show here that phospholipid binding drives important conformational rearrangements that activate the bacterial SRP receptor FtsY and the SRP–FtsY complex. This leads to accelerated SRP–FtsY complex assembly, and allows the SRP–FtsY complex to more efficiently unload cargo proteins. Likewise, formation of an active SRP–FtsY GTPase complex exposes FtsY’s lipid-binding helix and enables stable membrane association of the targeting complex. Thus, membrane binding, complex assembly with SRP, and cargo unloading are inextricably linked to each other via conformational changes in FtsY. These allosteric communications allow the membrane delivery of cargo proteins to be efficiently coupled to their subsequent unloading and translocation, thus providing spatial coordination during protein targeting.  相似文献   

2.
Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.  相似文献   

3.
Two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of newly synthesized proteins to the endoplasmic reticulum or plasma membrane. During the protein targeting reaction, the 4.5S SRP RNA accelerates the association between the two GTPases by 400-fold. Using fluorescence resonance energy transfer, we demonstrate here that formation of a stable SRP·SR complex involves two distinct steps: a fast initial association between SRP and SR to form a GTP-independent early complex and then a GTP-dependent conformational rearrangement to form the stable final complex. We also found that the 4.5S SRP RNA significantly stabilizes the early GTP-independent intermediate. Furthermore, mutational analyses show that there is a strong correlation between the ability of the mutant SRP RNAs to stabilize the early intermediate and their ability to accelerate SRP·SR complex formation. We propose that the SRP RNA, by stabilizing the early intermediate, can give this transient intermediate a longer life time and therefore a higher probability to rearrange to the stable final complex. This provides a coherent model that explains how the 4.5S RNA exerts its catalytic role in SRP·SR complex assembly.  相似文献   

4.
The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30- kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane.  相似文献   

5.
The signal recognition particle (SRP) pathway mediates co-translational targeting of nascent proteins to membranes. Chloroplast SRP is unique in that it does not contain the otherwise universally conserved SRP RNA, which accelerates the association between the SRP guanosine-5′-triphosphate (GTP) binding protein and its receptor FtsY in classical SRP pathways. Recently, we showed that the SRP and SRP receptor (SR) GTPases from chloroplast (cpSRP54 and cpFtsY, respectively) can interact with one another 400-fold more efficiently than their bacterial homologues, thus providing an explanation as to why this novel chloroplast SRP pathway bypasses the requirement for the SRP RNA. Here we report the crystal structure of cpFtsY from Arabidopsis thaliana at 2.0 Å resolution. In this chloroplast SR, the N-terminal “N” domain is more tightly packed, and a more extensive interaction surface is formed between the GTPase “G” domain and the N domain than was previously observed in many of its bacterial homologues. As a result, the overall conformation of apo-cpFtsY is closer to that found in the bacterial SRP•FtsY complex than in free bacterial FtsY, especially with regard to the relative orientation of the N and G domains. In contrast, active-site residues in the G domain are mispositioned, explaining the low basal GTP binding and hydrolysis activity of free cpFtsY. This structure emphasizes proper N-G domain arrangement as a key factor in modulating the efficiency of SRP-receptor interaction and helps account, in part, for the faster kinetics at which the chloroplast SR interacts with its binding partner in the absence of an SRP RNA.  相似文献   

6.
7.
In all three kingdoms of life, co-translational targeting of secretory and membrane proteins to the prokaryotic plasma membrane or eukaryotic endoplasmic reticulum is mediated by a ribonucleoprotein complex, the signal recognition particle (SRP), and its membrane-associated receptor (SR). SRP binds to signal sequences of nascent proteins as they emerge from the exit tunnel of the ribosome. The resulting targeting complex, composed of the SRP and the ribosome-nascent chain complex (RNC), then docks with the SR in a GTP-dependent manner. Passing through a complex series of conformational states, SRP and SR deliver the RNC to the translocon, which in turn mediates protein translocation across or integration into the membrane. The core structural and mechanistic principles of SRP-dependent protein targeting are universally conserved. Recent structural investigations combining X-ray crystallography and cryo-electron microscopy have provided new insights into three essentials steps of the SRP-dependent protein targeting cycle: the assembly and interaction of the SRP ribonucleoprotein core, the GTP-dependent SRP-SR association, and the interaction between SRP and the ribosome.  相似文献   

8.
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

9.
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes.  相似文献   

10.
Shan SO  Walter P 《FEBS letters》2005,579(4):921-926
The signal recognition particle (SRP) mediates the co-translational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane, or the bacterial plasma membrane. During this process, two GTPases, one in the SRP and one in the SRP receptor (SR), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. The recent crystal structures of the T. aquaticus SRP.SR complex show that the two GTPases associate via an unusually extensive and highly cooperative interaction surface, and form a composite active site at the interface. GTPase activation proceeds through a unique mechanism, stimulated by both interactions between the twinned GTP molecules across the dimer interface and by conformational rearrangements that position catalytic residues in each active site with respect to the bound substrates. Distinct classes of mutations have been isolated that inhibit specific stages during SRP-SR complex formation and activation, suggesting discrete conformational stages during formation of the active SRP.SR complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.  相似文献   

11.
We have analyzed the interactions between the signal recognition particle (SRP), the SRP receptor (SR), and the ribosome using GTPase assays, biosensor experiments, and ribosome binding assays. Possible mechanisms that could contribute to an enhanced affinity between the SR and the SRP-ribosome nascent chain complex to promote protein translocation under physiological ionic strength conditions have been explored. Ribosomes or 60S large ribosomal subunits activate the GTPase cycle of SRP54 and SRalpha by providing a platform for assembly of the SRP-SR complex. Biosensor experiments revealed high-affinity, saturable binding of ribosomes or large ribosomal subunits to the SR. Remarkably, the SR has a 100-fold higher affinity for the ribosome than for SRP. Proteoliposomes that contain the SR bind nontranslating ribosomes with an affinity comparable to that shown by the Sec61 complex. An NH2-terminal 319-residue segment of SRalpha is necessary and sufficient for binding of SR to the ribosome. We propose that the ribosome-SR interaction accelerates targeting of the ribosome nascent chain complex to the RER, while the SRP-SR interaction is crucial for maintaining the fidelity of the targeting reaction.  相似文献   

12.
Detergent extracts of canine pancreas rough microsomal membranes were depleted of either the signal recognition particle receptor (SR), which mediates the signal recognition particle (SRP)-dependent targeting of the ribosome/nascent chain complex to the membrane, or the signal sequence receptor (SSR), which has been proposed to function as a membrane bound receptor for the newly targeted nascent chain and/or as a component of a multi-protein translocation complex responsible for transfer of the nascent chain across the membrane. Depletion of the two components was performed by chromatography of detergent extracts on immunoaffinity supports. Detergent extracts lacking either SR or SSR were reconstituted and assayed for activity with respect to SR dependent elongation arrest release, nascent chain targeting, ribosome binding, secretory precursor translocation, and membrane protein integration. Depletion of SR resulted in the loss of elongation arrest release activity, nascent chain targeting, secretory protein translocation, and membrane protein integration, although ribosome binding was unaffected. Full activity was restored by addition of immunoaffinity purified SR before reconstitution of the detergent extract. Surprisingly, depletion of SSR was without effect on any of the assayed activities, indicating that SSR is either not required for translocation or is one of a family of functionally redundant components.  相似文献   

13.
The universally conserved signal recognition particle (SRP) and SRP receptor (SR) mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the GTPase cycle in each system adapts to its distinct substrate proteins were unclear. Here, we show that interactions at the active site essential for GTPase activation in the chloroplast SRP and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic homologues, GTPase activation in the chloroplast SRP-SR complex contributes marginally to the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast GTPases may forego the GTPase activation step as a key regulatory point. These features may reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein.  相似文献   

14.
During cotranslational protein targeting, two guanosine triphosphatase (GTPase) in the signal recognition particle (SRP) and its receptor (SR) form a unique complex in which hydrolyses of both guanosine triphosphates (GTP) are activated in a shared active site. It was thought that GTP hydrolysis drives the recycling of SRP and SR, but is not crucial for protein targeting. Here, we examined the translocation efficiency of mutant GTPases that block the interaction between SRP and SR at specific stages. Surprisingly, mutants that allow SRP-SR complex assembly but block GTPase activation severely compromise protein translocation. These mutations map to the highly conserved insertion box domain loops that rearrange upon complex formation to form multiple catalytic interactions with the two GTPs. Thus, although GTP hydrolysis is not required, the molecular rearrangements that lead to GTPase activation are essential for protein targeting. Most importantly, our results show that an elaborate rearrangement within the SRP-SR GTPase complex is required to drive the unloading and initiate translocation of cargo proteins.  相似文献   

15.
The signal recognition particle (SRP) is a unique moiety in living cells, which has been conserved during evolution for protein targeting and translocation across membranes in collaboration with its receptor (SR). The structural and functional features of its components, (six polypeptides and RNA) are being rapidly elucidated. We have endeavored in this review to epitomize most recent advances in this field. Its two domains (S and Alu) play important roles in signal recognition, elongation arrest and protein targeting of the polypeptide being synthesized in the cytoplasm. SRP14 and SRP9 help in the elongation arrest by interacting with signal peptide. GTPase activity of SRP54 releases SRP from SR. In addition, alpha and beta subunits of SR also possess GTPase activities and the three GTPases help in docking of nascent peptide chain-ribosome complex to the translocation site. Further strides in proteomics employing mass spectrometry and X-ray crystallography are expected to throw more light on the molecular events occurring during protein targeting and translocation.  相似文献   

16.
The RNA component of the signal recognition particle (SRP) is universally required for cotranslational protein targeting. Biochemical studies have shown that SRP RNA participates in the central step of protein targeting by catalyzing the interaction of the SRP with the SRP receptor (SR). SRP RNA also accelerates GTP hydrolysis in the SRP.SR complex once formed. Using a reverse-genetic and biochemical analysis, we identified mutations in the E. coli SRP protein, Ffh, that abrogate the activity of the SRP RNA and cause corresponding targeting defects in vivo. The mutations in Ffh that disrupt SRP RNA activity map to regions that undergo dramatic conformational changes during the targeting reaction, suggesting that the activity of the SRP RNA is linked to the major conformational changes in the signal sequence-binding subunit of the SRP. In this way, the SRP RNA may coordinate the interaction of the SRP and the SR with ribosome recruitment and transfer to the translocon, explaining why the SRP RNA is an indispensable component of the protein targeting machinery.  相似文献   

17.
The signal recognition particle and its receptor (SR) target nascent secretory proteins to the ER. SR is a heterodimeric ER membrane protein whose subunits, SRα and SRβ, are both members of the GTPase superfamily. Here we characterize a 27-kD protein in Saccharomyces cerevisiae (encoded by SRP102) as a homologue of mammalian SRβ. This notion is supported (a) by Srp102p''s sequence similarity to SRβ; (b) by its disposition as an ER membrane protein; (c) by its interaction with Srp101p, the yeast SRα homologue; and (d) by its role in SRP-dependent protein targeting in vivo. The GTP-binding site in Srp102p is surprisingly insensitive to single amino acid substitutions that inactivate other GTPases. Multiple mutations in the GTP-binding site, however, inactivate Srp102p. Loss of activity parallels a loss of affinity between Srp102p and Srp101p, indicating that the interaction between SR subunits is important for function. Deleting the transmembrane domain of Srp102p, the only known membrane anchor in SR, renders SR soluble in the cytosol, which unexpectedly does not significantly impair SR function. This result suggests that SR functions as a regulatory switch that needs to associate with the ER membrane only transiently through interactions with other components.  相似文献   

18.
The signal recognition particle (SRP) RNA is a universally conserved and essential component of the SRP that mediates the co-translational targeting of proteins to the correct cellular membrane. During the targeting reaction, two functional ends in the SRP RNA mediate distinct functions. Whereas the RNA tetraloop facilitates initial assembly of two GTPases between the SRP and SRP receptor, this GTPase complex subsequently relocalizes ∼100 Å to the 5′,3′-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. Here we combined biochemical, single molecule, and NMR studies to investigate the molecular mechanism of this large scale conformational change. We show that two independent sites contribute to the interaction of the GTPase complex with the SRP RNA distal end. Loop E plays a crucial role in the precise positioning of the GTPase complex on these two sites by inducing a defined bend in the RNA helix and thus generating a preorganized recognition surface. GTPase docking can be uncoupled from its subsequent activation, which is mediated by conserved bases in the next internal loop. These results, combined with recent structural work, elucidate how the SRP RNA induces GTPase relocalization and activation at the end of the protein targeting reaction.  相似文献   

19.
Lakkaraju AK  Mary C  Scherrer A  Johnson AE  Strub K 《Cell》2008,133(3):440-451
SRP is essential for targeting nascent chains to the endoplasmic reticulum, and it delays nascent chain elongation in cell-free translation systems. However, the significance of this function has remained unclear. We show that efficient protein translocation into the ER is incompatible with normal cellular translation rates due to rate-limiting concentrations of SRP receptor (SR). We complemented mammalian cells depleted of SRP14 by expressing mutant versions of the protein lacking the elongation arrest function. The absence of a delay caused inefficient targeting of preproteins leading to defects in secretion, depletion of proteins in the endogenous membranes, and reduced cell growth. The detrimental effects were reversed by either reducing the cellular protein synthesis rate or increasing SR expression. SRP therefore ensures that nascent chains remain translocation competent during the targeting time window dictated by SR. Since SRP-signal sequence affinities vary, the delay may also regulate which proteins are preferentially targeted.  相似文献   

20.
Co-translational membrane targeting of proteins by the bacterial signal-recognition particle (SRP) requires the specific interaction of the SRP-ribosome nascent chain complex with FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRalpha-subunit of the eukaryotic SR, which is tethered to the endoplasmic-reticulum membrane by its interaction with the integral SRbeta-subunit. In contrast to SRalpha, FtsY is partly membrane associated and partly located in the cytosol. However, the mechanisms by which FtsY associates with the membrane are unclear. No gene encoding an SRbeta homologue has been found in bacterial genomes, and the presence of an FtsY-specific membrane receptor has not been shown so far. We now provide evidence for the direct interaction between FtsY and the SecY translocon. This interaction offers an explanation of how the bacterial SRP cycle is regulated in response to available translocation channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号