共查询到20条相似文献,搜索用时 0 毫秒
1.
Hiroshi Watanabe Tsunaki Hongu Masakazu Yamazaki Yasunori Kanaho 《Biochemical and biophysical research communications》2011,(2):288
p38 mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth. However, the underlying molecular mechanism(s) remains unclear. Here, we demonstrate that phospholipase D2 (PLD2) mediates p38 signaling in neurite outgrowth. Stimulation of rat pheochromocytoma PC12 cells with nerve growth factor activated PLD2 and augmented neurite outgrowth, both of which were inhibited by pharmacological suppression of p38. Overexpression of constitutively active MAP kinase kinase 6 (MKK6-CA) activated coexpressed PLD2 in PC12 and mouse neuroblastoma N1E-115 cells. Overexpression of wild-type PLD2 in these cells strongly augmented the neurite outgrowth induced by MKK6-CA, whereas lipase-deficient PLD2 suppressed it. These findings provide evidence that PLD2 functions as a downstream molecule of p38 in the neurite outgrowth signaling cascade. 相似文献
2.
Carlos Guijas Gema Pérez-Chacón Alma M. Astudillo Julio M. Rubio Luis Gil-de-Gómez María A. Balboa Jesús Balsinde 《Journal of lipid research》2012,53(11):2343-2354
Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60–70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A2α (cPLA2α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA2α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA2α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis. 相似文献
3.
The mechanism underlying protease-activated receptor (PAR)-activation and subsequent interleukin (IL)-8 production in airway epithelial cells is not yet understood. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in A549 airway epithelial cells. We studied the consequence of activation of PARs with simultaneous exposure to LPS. Thrombin, PAR-2-activating peptide and LPS, were tested alone and in combination. They induced significant synthesis of IL-8. However, only activation of PAR triggered phosphorylation of ERK1/2 and JNK. The application of the inhibitors of these two MAPKs resulted in reduction of IL-8 production. Thus, activation of PARs but not stimulation with LPS leads to ERK1/2 and JNK-mediated production of IL-8. 相似文献
4.
Sznarkowska A Maleńczyk K Kadziński L Bielawski KP Banecki B Zawacka-Pankau J 《FEBS letters》2011,(1):255-260
The p53 tumor suppressor is recognized as a promising target for anti-cancer therapies. We previously reported that protoporphyrin IX (PpIX) disrupts the p53/murine double minute 2 (MDM2) complex and leads to p53 accumulation and activation of apoptosis in HCT 116 cells. Here we show the direct binding of PpIX to the N-terminal domain of p53. Furthermore, we addressed the induction of apoptosis in HCT 116 p53-null cells by PpIX and revealed interactions between PpIX and p73. We propose that PpIX disrupts the p53/MDM2 or MDMX and p73/MDM2 complexes and thereby activates the p53- or p73-dependent cancer cell death. 相似文献
5.
Rösch S Ramer R Brune K Hinz B 《Biochemical and biophysical research communications》2005,338(2):1171-1178
Prostaglandins (PGs) have been implicated in lowering intraocular pressure (IOP). A possible role of cyclooxygenase-2 (COX-2) in this process was emphasized by findings showing impaired COX-2 expression in the non-pigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. The present study investigates the effect of the major COX-2 product, PGE(2), on the expression of its synthesizing enzyme in human NPE cells (ODM-2). PGE(2) led to an increase of COX-2 mRNA and protein expression, whereas the expression of COX-1 remained unchanged. Upregulation of COX-2 expression by PGE(2) was accompanied by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, and was abrogated by inhibitors of both pathways. Moreover, PGE(2)-induced COX-2 expression was suppressed by the intracellular calcium chelator, BAPTA/AM, and the protein kinase C inhibitor bisindolylmaleimide II, whereas the protein kinase A inhibitor H-89 was inactive in this respect. Induction of COX-2 expression was also elicited by butaprost (EP(2) receptor agonist) and 11-deoxy PGE(1) (EP(2)/EP(4) receptor agonist), but not by EP(1)/EP(3) receptor agonists (17-phenyl-omega-trinor PGE(2), sulprostone). Consistent with these findings, the EP(1)/EP(2) receptor antagonist, AH-6809, and the selective EP(4) receptor antagonist, ONO-AE3-208, significantly reduced PGE(2)-induced COX-2 expression. Collectively, our results demonstrate that PGE(2) at physiologically relevant concentrations induces COX-2 expression in human NPE cells via activation of EP(2)- and EP(4) receptors and phosphorylation of p38 and p42/44 MAPKs. Positive feedback regulation of COX-2 may contribute to the production of outflow-facilitating PGs and consequently to regulation of IOP. 相似文献
6.
J-Y Chang M-F Chiang S-R Lin M-H Lee H He P-Y Chou S-J Chen Y-A Chen L-Y Yang F-J Lai C-C Hsieh T-H Hsieh H-M Sheu C-I Sze N-S Chang 《Cell death & disease》2012,3(4):e302
Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death. 相似文献
7.
Gutiérrez-Venegas G Kawasaki-Cárdenas P Cruz-Arroyo SR Pérez-Garzón M Maldonado-Frías S 《Life sciences》2006,78(22):2577-2583
Tyrosine phosphorylation is an early step in lipopolysaccharide (LPS) stimulated monocytes and macrophages that appears to play a key role in signal transduction. We have demonstrated that LPS purified from Actinobacillus actinomycetemcomitans also increases protein tyrosine phosphorylation in human gingival fibroblasts (HGF). This effect was elicited rapidly after LPS stimulation at concentrations that stimulate anti-bacterial responses in human gingival fibroblasts. Two main proteins, with an apparent molecular weight of 44 and 42 kDa, were phosphorylated after LPS stimulation of the human gingival fibroblasts. The phosphorylation was detected after 5 to 15 min and reached the maximum at 30 min of treatment. The increase in tyrosine phosphorylation was apparent following stimulation with LPS at 10 ng/ml and the response was dose dependent up to 10 microg/ml. Pretreatment with the tyrosine kinase inhibitors, herbimycin A and genistein inhibited the LPS-stimulated phosphorylation of p44 and p42 MAP kinases in a dose dependent manner. Pretreatment of human gingival fibroblasts with antibodies anti-CD14 or anti-TLR-4 but not anti-TLR-2 inhibited the LPS-induced tyrosine phosphorylation of p44 and p42. Additionally, LPS-induced p44 and p42 phosphorylation was inhibited by polymyxin treatment. These findings demonstrate that LPS from A. actinomycetemcomintans increases rapidly p44 and p42 phosphorylation (ERK 1 and ERK 2, respectively) in human gingival fibroblasts. Our data also suggest that CD14 and TLR-4 receptors are involved in the LPS effects in human gingival fibroblasts. 相似文献
8.
p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase A2 (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions. 相似文献
9.
Summary The signaling pathways leading to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activation by N-formyl-Met-Leu-Phe (fMLP) or platelet activating factor (PAF) in human neutrophils were examined. Previously, we found that changes of intracellular Ca2+ ([Ca
) stimulated by PAF and fMLP were due to Ca2+ influx and internal Ca2+ release, respectively. To further determine the mechanism of MAPK activation and its relation with Ca2+ influx, blood from healthy human volunteers was taken by venous puncture. Human polymorphonuclear cells (PMNs) were isolated and incubated with protein kinase C (PKC) inhibitor Calphostin C, PKC- isoform inhibitor GF109203X, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002, phospholipase C (PLC) inhibitor U73122, phospholipase A2 (PLA2) inhibitor Aristolochic acid, store-operated calcium (SOC) channel inhibitor SKF96365, or extracellular calcium chelator EGTA followed by fMLP or PAF treatment. Phosphorylation of ERK p38 was determined by immunoblotting analysis. Our data indicate that neutrophil MAPK signaling pathways mediated by fMLP and PAF are different. PAF-induced ERK phosphorylation is mediated by PI3K, PKC, PLA2, PLC, and extracellular calcium, whereas fMLP-induced ERK phosphorylation does not involve the PKC- isoform and extracellular calcium. PAF-induced p38 phosphorylation involves PLA2, whereas fMLP-induced p38 activation is PLC dependent. 相似文献
10.
Lysosomal photosensitizers have been used in photodynamic therapy. The combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. Lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, N-aspartyl chlorin e6 (NPe6), an effective photosensitizer that preferentially accumulates in lysosomes, was used to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells (ASTC-a-1) after NPe6-photodynamic treatment (NPe6-PDT) was studied using real-time single-cell analysis. Our results demonstrated that NPe6-PDT induced rapid generation of reactive oxygen species (ROS). The photodynamically produced ROS caused a rapid destruction of lysosomes, leading to release of cathepsins, and the ROS scavengers vitamin C and NAC prevent the effects. Then the following spatiotemporal sequence of cellular events was observed during cell apoptosis: Bcl-2-associated X protein (Bax) activation, cytochrome c release, and caspase-9/-3 activation. Importantly, the activation of Bax proved to be a crucial event in this apoptotic machinery, because suppressing the endogenous Bax using siRNA could significantly inhibit cytochrome c release and caspase-9/-3 activation and protect the cell from death. In conclusion, this study demonstrates that PDT with lysosomal photosensitizer induces Bax activation and subsequently initiates the mitochondrial apoptotic pathway. 相似文献
11.
Hana Pivoňková Peter Šebest Olga Tichá Marie Brázdová Václav Brázda 《Biochemical and biophysical research communications》2010,393(4):894-38
Selective binding of the wild type tumor suppressor protein p53 to negatively and positively supercoiled (sc) DNA was studied using intercalative drugs chloroquine (CQ), ethidium bromide, acridine derivatives and doxorubicin as a modulators of the level of DNA supercoiling. The p53 was found to lose gradually its preferential binding to negatively scDNA with increasing concentrations of intercalators until the DNA negative superhelix turns were relaxed. Formation of positive superhelices (due to further increasing intercalator concentrations) rendered the circular duplex DNA to be preferentially bound by the p53 again. CQ at concentrations modulating the closed circular DNA topology did not prevent the p53 from recognizing a specific target sequence within topologically unconstrained linear DNA. Experiments with DNA topoisomer distributions differing in their superhelix densities revealed the p53 to bind selectively DNA molecules possessing higher number of negative or positive superturns. Possible modes of the p53 binding to the negatively or positively supercoiled DNA and tentative biological consequences are discussed. 相似文献
12.
David Monaghan Enda O’Connell Faye L. Cruickshank Barry O’Sullivan Francis J. Giles Alison N. Hulme Howard O. Fearnhead 《Biochemical and biophysical research communications》2014
Anisomycin was identified in a screen of clinical compounds as a drug that kills breast cancer cells (MDA16 cells, derived from the triple negative breast cancer cell line, MDA-MB-468) that express high levels of an efflux pump, ABCB1. We show the MDA16 cells died by a caspase-independent mechanism, while MDA-MB-468 cells died by apoptosis. There was no correlation between cell death and either protein synthesis or JNK activation, which had previously been implicated in anisomycin-induced cell death. In addition, anisomycin analogues that did not inhibit protein synthesis or activate JNK retained the ability to induce cell death. These data suggest that either a ribosome-ANS complex is a death signal in the absence of JNK activation or ANS kills cells by binding to an as yet unidentified target. 相似文献
13.
Prostaglandin F2alpha (PGF2alpha) induces cyclin D1 expression and DNA synthesis in Swiss 3T3 cells. In order to assess which signaling mechanisms are implicated in these processes, we have used both a pharmacological approach and interfering mutants. We demonstrate that PGF2alpha induces extracellular-signal-regulated kinase (ERK1-2) and p38MAPK activation, and inhibition of any of these signaling pathways completely blocks PGF2alpha-stimulated DNA synthesis. We also show that ERK1-2, but not p38MAPK activation is required to induce cyclin D1 expression, strongly suggesting that the concerted action of cyclin D1 gene expression and other events are required to induce complete phosphorylation of retinoblastoma protein and S-phase entry in response to PGF2alpha. 相似文献
14.
Gastric cancer is a common malignancy in many countries of the world, especially in Asia. Prevention is likely to be the most effective means of not only reducing the incidence but also mortality from this disease. The term 'chemoprevention' has been referred to the prevention of cancer using specific agents to suppress or reverse the carcinogenic process. In recent years, attention has been focused on the anticancer properties of edible plants, an important role in the prevention of disease. Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. The purpose of this study was to examine whether the plant, H. sabdariffa extracts (HSE), affects the apoptosis of AGS cells. Using a set of apoptotic detection assays, they showed that HSE induced cytotoxicity and apoptosis of AGS cells in a concentration-dependent manner but is ineffective in Chang liver cells. The result also revealed increased phosphorylation in p38, JNK and c-Jun, cytochrome c release, and expression of Fas, FasL, Bax, and t-Bid in the HSE-treated AGS cells. We further used MAPK inhibitors to evaluate their effect on the HSE-induced AGS death. The data showed that SB203580 (p38 inhibitor), JNK inhibitor I and II or transfection with the mutant JNK expression vector had strong potential in inhibiting AGS cells apoptosis and related proteins expression. Finally, we suggested that HSE mediated AGS apoptosis via the JNK/p38 signaling cascade. According to these results, HSE could be developed as a chemopreventive agent. 相似文献
15.
Acute ethanol loading causes oxidative stress to activate cell-death signaling via c-Jun NH2-terminal kinase (JNK) in livers. JNK are stimulated under conditions of endoplasmic reticulum (ER) stress which causes programmed cell death. However, no remarked cell death was observed in acute ethanol intoxication. Akt, one of the cell survival protein kinases, may be activated under ethanol loading. The aim of this study was to estimate activation of JNK and ER stress, role of ethanol metabolism on the activation, and association of JNK with Akt under acute ethanol loading using the perfused rat liver system. Activation of JNK or Akt and association of JNK and Akt with JNK interacting protein 1 were estimated by immunoprecipitation and immunoblotting. Expression of 78 kDa glucose-regulated protein (GRP78) mRNA, a biomarker of ER stress, was detected by quantitative real-time RT-PCR. Activations of JNK and Akt were enhanced by co-treatment with ethanol and a classical inhibitor of alcohol dehydrogenase (ADH). Addition of an antioxidant reduced the activation of JNK. Ethanol loading with ADH inhibition causes down-regulation of GRP78 mRNA levels. Therefore, these findings suggest first revelation that inhibition of ethanol metabolism complicates oxidative and ER stresses produced by ethanol. 相似文献
16.
17.
Lin-Hui Zhang Yong-Liang Jia Xi-Xi Lin Hong-Quan Zhang Xin-Wei Dong Jun-Ming Zhao Jian Shen Hui-Juan Shen Fen-fen Li Xiao-Feng Yan Wei Li Yu-Qing Zhao Qiang-Min Xie 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.Methods
The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.Results
AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.Conclusions and general significance
These data support development of AD-1 as a potential agent for lung cancer therapy. 相似文献18.
19.
Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined. 相似文献