首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pluripotent stem cells are able to self-renew indefinitely and differentiate into all types of cells in the body. They can thus be an inexhaustible source for future cell transplantation therapy to treat degenerative diseases which currently have no cure. However, non-autologous cells will cause immune rejection. Induced pluripotent stem cell (iPSC) technology can convert somatic cells to the pluripotent state, and therefore offers a solution to this problem. Since the first generation of iPSCs, there has been an explosion of relevant research, from which we have learned much about the genetic networks and epigenetic landscape of pluripotency, as well as how to manipulate genes, epigenetics, and microRNAs to obtain iPSCs. In this review, we focus on the mechanism of cellular reprogramming and current methods to induce pluripotency. We also highlight new problems emerging from iPSCs. Better understanding of the fundamental mechanisms underlying pluripotenty and refining the methodology of iPSC generation will have a significant impact on future development of regenerative medicine.  相似文献   

2.
The breakthrough development of induced pluripotent stem cells(iPSCs)raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells.However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear.In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells(NPCs)and analyzed their immunogenicity.Through co-culture with autogenous peripheral blood mononuclear cells(PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation.However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs.Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells(CD3+CD8 T cells,CD3+CD8+T cells or CD3 CD56+NK cells)by NPCs in both PBMC and T cell co-culture systems.These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs.  相似文献   

3.
Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism''s life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.  相似文献   

4.
《Fly》2013,7(3):132-137
Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.  相似文献   

5.
As soon as induced pluripotent stem cells (iPSCs) reprogramming of somatic cells were developed, the discovery attracted the attention of scientists, offering new perspectives for personalized medicine and providing a powerful platform for drug testing. The technology was almost immediately applied to cancer studies. As presented in this review, direct reprogramming of cancer cells with enforced expression of pluripotency factors have several basic purposes, all of which aim to explain the complex nature of cancer development and progression, therapy-resistance and relapse, and ultimately lead to the development of novel anti-cancer therapies. Here, we briefly present recent advances in reprogramming methodologies as well as commonalities between cell reprogramming and carcinogenesis and discuss recent outcomes from the implementation of induced pluripotency into cancer research.  相似文献   

6.
7.
Since mouse embryonic stem (ES) cells was first derived in 1981, the ability of this unprecedented cell type to self‐renew and differentiate without limit has revolutionized the discovery tools that are used to study gene functions and development. Furthermore, they have inspired others to hunt for similar cells from other species. The derivation of human ES cells in 1998 has accelerated these discoveries and has also widely provoked public interest, due to both the scientific significance of these cells for human tissue regeneration and the ethical disputes over the use of donated early human embryos. However, this is no longer a barrier, with the recent discovery of methods that can convert differentiated somatic cells into ES‐like cells or induced pluripotent stem (iPS) cells, by using defined reprogramming factors. This review attempts to summarize the progresses in the derivation of ES cells (as well as other embryo‐derived pluripotent cells) and iPS cells from various species. We will focus on the molecular and biological features of the cells, as well as the different determinants identified thus far to sustain their pluripotency. J. Cell. Biochem. 109: 16–25, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
诱导多潜能干细胞(iPSCs)的研究与应用进展   总被引:3,自引:0,他引:3  
诱导多潜能干细胞(induced pluripotent stem cells,iPSCs)是体细胞在外源因子作用下,经直接细胞核程序重整而重新获得多潜能的干细胞.iPSCs在疾病的模型建立与机理研究、细胞治疗、药物的发现与评价等方面有着巨大的潜在应用价值.在过去几年中,科学家们致力于改进体细胞重编程技术并取得许多突破.然而,为实现其在临床上的应用,必须克服体细胞重编程效率低和iPSCs成瘤风险两大挑战,而且重编程机制有待进一步阐明.结合iPSCs最新研究成果,评述了有关领域国内外研究进展,重点讨论当前存在问题,并展望未来研究方向.  相似文献   

11.
12.
Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma‐associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2‐overexpressing iPS cells from hMAGEA2‐overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self‐renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self‐renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.  相似文献   

13.
DNMT3B is a de novo DNA methyltransferase that is highly expressed in mouse and human embryonic stem (ES) cells and has been shown to be essential for differentiation of mouse ES cells toward different lineages. In the present study, we found that DNMT3B is rapidly down-regulated in human ES cells during retinoic acid (RA)-induced differentiation compared with DNMT3A2, which is also highly expressed in ES cells. Silencing of DNMT3B in human ES cells by an inducible shRNAi system leads to a reduction of clonal ability of the stem cells, while expression of OCT4 and NANOG is unchanged. By contrast, the germline-specific genes VASA and SCP3 and the surface antigen BE12 are down regulated following DNMT3B knockdown. Upon retinoic acid-induced differentiation, we found that depletion of DNMT3B leads to a decrease in expression of the surface antigen A2B5 and of neural tube-associated genes PAX7 and BRN3A. Consistent with its importance in stem cell differentiation, we observed that silencing of DNMT3B facilitates the generation of cells that bear the hallmarks of pluripotency. Our findings suggest a role of DNMT3B in controlling the differentiation of human ES cells and in the generation of iPS cells.  相似文献   

14.
15.
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specific iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.  相似文献   

16.
Expression of four major reprogramming transgenes, including Oct4, Sox2, Klf4 and c-myc, in somatic cells enables them to have pluripotency. These cells are iPSC (induced pluripotent stem cell) that currently show the greatest potential for differentiation into cells of the three germ lineages. One of the issues facing the successful reprogramming and clinical translation of iPSC technology is the high rate of apoptosis after the reprogramming process. Reprogramming is a stressful process, and the p53 apoptotic pathway plays a negative role in cell growth and self-renewal. Apoptosis via the p53 pathway serves as a major barrier in nuclear somatic cell reprogramming during iPSC generation. DHEA (dehydroepiandrosterone) is an abundant steroid that is produced at high levels in the adrenal cells, and withdrawal of DHEA increases the levels of p53 in the epithelial and stromal cells, resulting in increased levels of apoptotic cells; meanwhile, DHEA decreases cellular apoptosis. DHEA could improve the efficacy of reprogramming yield due to a decrease in apoptosis via the p53 pathway and an increase in cell viability.  相似文献   

17.
18.
The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry.  相似文献   

19.
20.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号