首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

At the individual level, higher HIV viral load predicts sexual transmission risk. We evaluated San Francisco''s community viral load (CVL) as a population level marker of HIV transmission risk. We hypothesized that the decrease in CVL in San Francisco from 2004–2008, corresponding with increased rates of HIV testing, antiretroviral therapy (ART) coverage and effectiveness, and population-level virologic suppression, would be associated with a reduction in new HIV infections.

Methodology/Principal Findings

We used San Francisco''s HIV/AIDS surveillance system to examine the trends in CVL. Mean CVL was calculated as the mean of the most recent viral load of all reported HIV-positive individuals in a particular community. Total CVL was defined as the sum of the most recent viral loads of all HIV-positive individuals in a particular community. We used Poisson models with robust standard errors to assess the relationships between the mean and total CVL and the primary outcome: annual numbers of newly diagnosed HIV cases. Both mean and total CVL decreased from 2004–2008 and were accompanied by decreases in new HIV diagnoses from 798 (2004) to 434 (2008). The mean (p = 0.003) and total CVL (p = 0.002) were significantly associated with new HIV cases from 2004–2008.

Conclusions/Significance

Reductions in CVL are associated with decreased HIV infections. Results suggest that wide-scale ART could reduce HIV transmission at the population level. Because CVL is temporally upstream of new HIV infections, jurisdictions should consider adding CVL to routine HIV surveillance to track the epidemic, allocate resources, and to evaluate the effectiveness of HIV prevention and treatment efforts.  相似文献   

2.
Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections, which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100-150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of HIV-1 virulence.  相似文献   

3.

Introduction

Increased human immunodeficiency virus (HIV) virulence at infection has been suggested by a meta-analysis based on viral load and CD4 T lymphocytes (CD4) count during acute infection. This result was obtained after secondary analyses of large databases, facilitating the detection of differences. Similar finding in cohorts of more modest sample size would indicate that the effect could be more substantial.

Methods

Change from initial CD4 count and HIV viral load after acute HIV infection by calendar year was explored in patients treated at Lyon University hospitals. All patients admitted to our hospitals with acute HIV infection between 1996 and 2013 were included in our study. Initial CD4 count and viral load before the start of anti-retroviral treatment were analyzed. Trends over time were assessed in linear models.

Results

Initial CD4 count remained similar over time. However, in 2006–2013, initial viral load rose significantly (+1.12 log10/ml/year, p = 0.01).

Conclusion

Our data, obtained from a single hospital cohort, confirmed findings from a large meta-analysis, showed increased initial viremia at acute HIV infection since 2006 and suggesting potentially higher HIV virulence in recent years.  相似文献   

4.
Approximately 28% of the human population have been exposed to Mycobacterium tuberculosis (MTB), with the overwhelming majority of infected individuals not developing disease (latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk factor for the development of TB, the effect of underlying LTBI on HIV disease progression is less well characterized, in part because longitudinal data are lacking. We sorted all participants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set point viral load (SPVL), linear regression was used; the frequency of the most common opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with LTBI, and patients with active TB were compared using logistic regression and time-to-event analyses. In adjusted models, we corrected for baseline demographic characteristics, i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom 840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model (p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033) when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a more complex interaction between LTBI and HIV than previously assumed.

Surprisingly little is known about how latent tuberculosis infection alters human physiology and immune function. Extensive statistical analyses of the large Swiss HIV Cohort Study suggests that latent tuberculosis infection can be protective in individuals with HIV.  相似文献   

5.
Semen is a major vector for HIV transmission, but the semen HIV RNA viral load (VL) only correlates moderately with the blood VL. Viral shedding can be enhanced by genital infections and associated inflammation, but it can also occur in the absence of classical pathogens. Thus, we hypothesized that a dysregulated semen microbiome correlates with local HIV shedding. We analyzed semen samples from 49 men who have sex with men (MSM), including 22 HIV-uninfected and 27 HIV-infected men, at baseline and after starting antiretroviral therapy (ART) using 16S rRNA gene-based pyrosequencing and quantitative PCR. We studied the relationship of semen bacteria with HIV infection, semen cytokine levels, and semen VL by linear regression, non-metric multidimensional scaling, and goodness-of-fit test. Streptococcus, Corynebacterium, and Staphylococcus were common semen bacteria, irrespective of HIV status. While Ureaplasma was the more abundant Mollicutes in HIV-uninfected men, Mycoplasma dominated after HIV infection. HIV infection was associated with decreased semen microbiome diversity and richness, which were restored after six months of ART. In HIV-infected men, semen bacterial load correlated with seven pro-inflammatory semen cytokines, including IL-6 (p = 0.024), TNF-α (p = 0.009), and IL-1b (p = 0.002). IL-1b in particular was associated with semen VL (r2 = 0.18, p = 0.02). Semen bacterial load was also directly linked to the semen HIV VL (r2 = 0.15, p = 0.02). HIV infection reshapes the relationship between semen bacteria and pro-inflammatory cytokines, and both are linked to semen VL, which supports a role of the semen microbiome in HIV sexual transmission.  相似文献   

6.
Persons living with HIV (PLWH) who are engaged in care, yet not virally suppressed, represent a risk for transmission and opportunity for risk reduction interventions. This study describes characteristics of an outpatient clinic cohort of PLWH by laboratory confirmed viral suppression status and examines associations with demographics and sexual and drug use behaviors gathered through questionnaire. From a sample of 500 clinic patients, 438 were prescribed antiretroviral treatment (ART) and 62 were not. Among the 438 on ART, 72 (16.4%) were not virally suppressed at the most recent lab draw. Compared to individuals with a suppressed viral load, those that were unsuppressed were more likely to: be black (79.2% vs. 64.2%; p = 0.014); earn below $25,000/year (88.9% vs. 65.0%; p < 0.001); be of a younger age (47.8 vs. 50.0 mean years; p = 0.009); be on opiate substitution (14.1% vs. 6.3%; p = 0.023); and acknowledge poly-substance (38.9% vs. 24.4%; p = 0.012) and excessive alcohol use (13.9% vs. 6.0%; p = 0.019). Conversely, a smaller proportion of those with an unsuppressed viral load had multiple sex partners in the previous 30 days (39.8% vs. 58.5%; p = 0.003). In multivariable regression of those on ART, the prevalence of an unsuppressed viral load was 3% lower with each increasing year of age (aPR: 0.97; 95% CI: 0.95, 0.99) and 47% lower with income over $25,000/year (aPR: 0.33; 95% CI: 0.16, 0.70). In a separate analysis of all 500 subjects, ART was less frequently prescribed to blacks compared to whites, heterosexuals, those with lower education and income, and persons with active substance use. Findings confirm that a large proportion of PLWH and engaged in care were not virally suppressed and continued behaviors that risk transmission, indicating the need for screening, prevention counseling and access to ancillary services to lower the incidence of HIV infections.  相似文献   

7.
The recent origin and great evolutionary potential of HIV imply that the virulence of the virus might still be changing, which could greatly affect the future of the pandemic. However, previous studies of time trends of HIV virulence have yielded conflicting results. Here we used an established methodology to assess time trends in the severity (virulence) of untreated HIV infections in a large Italian cohort. We characterized clinical virulence by the decline slope of the CD4 count (n = 1423 patients) and the viral setpoint (n = 785 patients) in untreated patients with sufficient data points. We used linear regression models to detect correlations between the date of diagnosis (ranging 1984–2006) and the virulence markers, controlling for gender, exposure category, age, and CD4 count at entry. The decline slope of the CD4 count and the viral setpoint displayed highly significant correlation with the date of diagnosis pointing in the direction of increasing virulence. A detailed analysis of riskgroups revealed that the epidemics of intravenous drug users started with an apparently less virulent virus, but experienced the strongest trend towards steeper CD4 decline among the major exposure categories. While our study did not allow us to exclude the effect of potential time trends in host factors, our findings are consistent with the hypothesis of increasing HIV virulence. Importantly, the use of an established methodology allowed for a comparison with earlier results, which confirmed that genuine differences exist in the time trends of HIV virulence between different epidemics. We thus conclude that there is not a single global trend of HIV virulence, and results obtained in one epidemic cannot be extrapolated to others. Comparison of discordant patterns between riskgroups and epidemics hints at a converging trend, which might indicate that an optimal level of virulence might exist for the virus.  相似文献   

8.

Background

It is often assumed that local sexual networks play a dominant role in HIV spread in sub-Saharan Africa. The aim of this study was to determine the extent to which continued HIV transmission in rural communities—home to two-thirds of the African population—is driven by intra-community sexual networks versus viral introductions from outside of communities.

Methods and Findings

We analyzed the spatial dynamics of HIV transmission in rural Rakai District, Uganda, using data from a cohort of 14,594 individuals within 46 communities. We applied spatial clustering statistics, viral phylogenetics, and probabilistic transmission models to quantify the relative contribution of viral introductions into communities versus community- and household-based transmission to HIV incidence. Individuals living in households with HIV-incident (n = 189) or HIV-prevalent (n = 1,597) persons were 3.2 (95% CI: 2.7–3.7) times more likely to be HIV infected themselves compared to the population in general, but spatial clustering outside of households was relatively weak and was confined to distances <500 m. Phylogenetic analyses of gag and env genes suggest that chains of transmission frequently cross community boundaries. A total of 95 phylogenetic clusters were identified, of which 44% (42/95) were two individuals sharing a household. Among the remaining clusters, 72% (38/53) crossed community boundaries. Using the locations of self-reported sexual partners, we estimate that 39% (95% CI: 34%–42%) of new viral transmissions occur within stable household partnerships, and that among those infected by extra-household sexual partners, 62% (95% CI: 55%–70%) are infected by sexual partners from outside their community. These results rely on the representativeness of the sample and the quality of self-reported partnership data and may not reflect HIV transmission patterns outside of Rakai.

Conclusions

Our findings suggest that HIV introductions into communities are common and account for a significant proportion of new HIV infections acquired outside of households in rural Uganda, though the extent to which this is true elsewhere in Africa remains unknown. Our results also suggest that HIV prevention efforts should be implemented at spatial scales broader than the community and should target key populations likely responsible for introductions into communities. Please see later in the article for the Editors'' Summary  相似文献   

9.
Identifying recent HIV infection cases has important public health and clinical implications. It is essential for estimating incidence rates to monitor epidemic trends and evaluate the effectiveness of interventions. Detecting recent cases is also important for HIV prevention given the crucial role that recently infected individuals play in disease transmission, and because early treatment onset can improve the clinical outlook of patients while reducing transmission risk. Critical to this enterprise is the development and proper assessment of accurate classification assays that, based on cross-sectional samples of viral sequences, help determine infection recency status. In this work we assess some of the biases present in the evaluation of HIV recency classification algorithms that rely on measures of within-host viral diversity. Particularly, we examine how the time since infection (TSI) distribution of the infected subjects from which viral samples are drawn affect performance metrics (e.g., area under the ROC curve, sensitivity, specificity, accuracy and precision), potentially leading to misguided conclusions about the efficacy of classification assays. By comparing the performance of a given HIV recency assay using six different TSI distributions (four simulated TSI distributions representing different epidemic scenarios, and two empirical TSI distributions), we show that conclusions about the overall efficacy of the assay depend critically on properties of the TSI distribution. Moreover, we demonstrate that an assay with high overall classification accuracy, mainly due to properly sorting members of the well-represented groups in the validation dataset, can still perform notoriously poorly when sorting members of the less represented groups. This is an inherent issue of classification and diagnostics procedures that is often underappreciated. Thus, this work underscores the importance of acknowledging and properly addressing evaluation biases when proposing new HIV recency assays.  相似文献   

10.
Set point viral load in HIV patients ranges over several orders of magnitude and is a key determinant of disease progression in HIV. A number of recent studies have reported high heritability of set point viral load implying that viral genetic factors contribute substantially to the overall variation in viral load. The high heritability is surprising given the diversity of host factors associated with controlling viral infection. Here we develop an analytical model that describes the temporal changes of the distribution of set point viral load as a function of heritability. This model shows that high heritability is the most parsimonious explanation for the observed variance of set point viral load. Our results thus not only reinforce the credibility of previous estimates of heritability but also shed new light onto mechanisms of viral pathogenesis.  相似文献   

11.

Background

Treatment as prevention is a paradigm in HIV medicine which describes the public health benefit of antiretroviral therapy (ART). It is based on research showing substantial reductions in the risk of HIV transmission in persons with optimally suppressed HIV-1 Viral Loads (VL). The present study describes ten year VL trends at the national HIV treatment unit and estimates VL suppression at a population level in Barbados, a Caribbean island with a population of 277,000, an estimated adult HIV prevalence of 1.2%, and served by a single treatment unit.

Methods

The national HIV treatment centre of the Barbados Ministry of Health has a client VL database extending back to inception of the clinic in 2002 (n = 1,462 clients, n = 17,067 VL measurements). Optimal VL suppression was defined at a threshold value of ≤200 viral copies/mL.

Results

Analysis of VL trends showed a statistically significant improvement in VL suppression between 2002 to 2011, from 33.6% of clients achieving the 200 copies/mL threshold in 2002 to 70.3% in 2011 (P<0.001). Taking into account the proportion of clients alive and in care and on ART, the known diagnosed HIV population in Barbados, and estimates of unknown HIV infections, this translates into an estimated 26.2% VL suppression at a population level at the end of 2010.

Conclusions

We have demonstrated a significant trend towards optimal VL suppression in clients utilizing the services of the national HIV treatment program in Barbados over a 10-year period. Estimates of VL suppression at a population level are similar to reports in developed countries that applied similar methodologies and this could suggest a public health benefit of ART in minimizing the risk of sexual transmission of HIV. Continued efforts are warranted to extend HIV testing to hidden populations in Barbados and linking infected persons to care earlier in their disease.  相似文献   

12.

Background

In describing and understanding how the HIV epidemic spreads in African countries, previous studies have not taken into account the detailed periods at risk. This study is based on a micro-simulation model (individual-based) of the spread of the HIV epidemic in the population of Zambia, where women tend to marry early and where divorces are not frequent. The main target of the model was to fit the HIV seroprevalence profiles by age and sex observed at the Demographic and Health Survey conducted in 2001.

Methods and Findings

A two-sex micro-simulation model of HIV transmission was developed. Particular attention was paid to precise age-specific estimates of exposure to risk through the modelling of the formation and dissolution of relationships: marriage (stable union), casual partnership, and commercial sex. HIV transmission was exclusively heterosexual for adults or vertical (mother-to-child) for children. Three stages of HIV infection were taken into account. All parameters were derived from empirical population-based data. Results show that basic parameters could not explain the dynamics of the HIV epidemic in Zambia. In order to fit the age and sex patterns, several assumptions were made: differential susceptibility of young women to HIV infection, differential susceptibility or larger number of encounters for male clients of commercial sex workers, and higher transmission rate. The model allowed to quantify the role of each type of relationship in HIV transmission, the proportion of infections occurring at each stage of disease progression, and the net reproduction rate of the epidemic (R 0 = 1.95).

Conclusions

The simulation model reproduced the dynamics of the HIV epidemic in Zambia, and fitted the age and sex pattern of HIV seroprevalence in 2001. The same model could be used to measure the effect of changing behaviour in the future.  相似文献   

13.

Background

HIV-1 RNA plasma concentration at viral set-point is associated not only with disease outcome but also with the transmission dynamics of HIV-1. We investigated whether plasma HIV-1 RNA concentration and CD4 cell count at viral set-point have changed over time in the HIV epidemic in the Netherlands.

Methodology/Principal Findings

We selected 906 therapy-naïve patients with at least one plasma HIV-1 RNA concentration measured 9 to 27 months after estimated seroconversion. Changes in HIV-1 RNA and CD4 cell count at viral set-point over time were analysed using linear regression models. The ATHENA national observational cohort contributed all patients who seroconverted in or after 1996; the Amsterdam Cohort Studies (ACS) contributed seroconverters before 1996. The mean of the first HIV-1 RNA concentration measured 9–27 months after seroconversion was 4.30 log10 copies/ml (95% CI 4.17–4.42) for seroconverters from 1984 through 1995 (n = 163); 4.27 (4.16–4.37) for seroconverters 1996–2002 (n = 232), and 4.59 (4.52–4.66) for seroconverters 2003–2007 (n = 511). Compared to patients seroconverting between 2003–2007, the adjusted mean HIV-1 RNA concentration at set-point was 0.28 log10 copies/ml (95% CI 0.16–0.40; p<0.0001) and 0.26 (0.11–0.41; p = 0.0006) lower for those seroconverting between 1996–2002 and 1984–1995, respectively. Results were robust regardless of type of HIV-1 RNA assay, HIV-1 subtype, and interval between measurement and seroconversion. CD4 cell count at viral set-point declined over calendar time at approximately 5 cells/mm3/year.

Conclusion

The HIV-1 RNA plasma concentration at viral set-point has increased over the last decade of the HIV epidemic in the Netherlands. This is accompanied by a decreasing CD4 cell count over the period 1984–2007 and may have implications for both the course of the HIV infection and the epidemic.  相似文献   

14.
HIV can spread through its target cell population either via cell-free transmission, or by cell-to-cell transmission, presumably through virological synapses. Synaptic transmission entails the transfer of tens to hundreds of viruses per synapse, a fraction of which successfully integrate into the target cell genome. It is currently not understood how synaptic transmission affects viral fitness. Using a mathematical model, we investigate how different synaptic transmission strategies, defined by the number of viruses passed per synapse, influence the basic reproductive ratio of the virus, R0, and virus load. In the most basic scenario, the model suggests that R0 is maximized if a single virus particle is transferred per synapse. R0 decreases and the infection eventually cannot be maintained for larger numbers of transferred viruses, because multiple infection of the same cell wastes viruses that could otherwise enter uninfected cells. To explain the relatively large number of HIV copies transferred per synapse, we consider additional biological assumptions under which an intermediate number of viruses transferred per synapse could maximize R0. These include an increased burst size in multiply infected cells, the saturation of anti-viral factors upon infection of cells, and rate limiting steps during the process of synapse formation.  相似文献   

15.
An important component of pathogen evolution at the population level is evolution within hosts. Unless evolution within hosts is very slow compared to the duration of infection, the composition of pathogen genotypes within a host is likely to change during the course of an infection, thus altering the composition of genotypes available for transmission as infection progresses. We develop a nested modeling approach that allows us to follow the evolution of pathogens at the epidemiological level by explicitly considering within‐host evolutionary dynamics of multiple competing strains and the timing of transmission. We use the framework to investigate the impact of short‐sighted within‐host evolution on the evolution of virulence of human immunodeficiency virus (HIV), and find that the topology of the within‐host adaptive landscape determines how virulence evolves at the epidemiological level. If viral reproduction rates increase significantly during the course of infection, the viral population will evolve a high level of virulence even though this will reduce the transmission potential of the virus. However, if reproduction rates increase more modestly, as data suggest, our model predicts that HIV virulence will be only marginally higher than the level that maximizes the transmission potential of the virus.  相似文献   

16.
17.
Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.  相似文献   

18.

Background

Universal access to first-line antiretroviral therapy (ART) for HIV infection is becoming more of a reality in most low and middle income countries in Asia. However, second-line therapies are relatively scarce.

Methods and Findings

We developed a mathematical model of an HIV epidemic in a Southeast Asian setting and used it to forecast the impact of treatment plans, without second-line options, on the potential degree of acquisition and transmission of drug resistant HIV strains. We show that after 10 years of universal treatment access, up to 20% of treatment-naïve individuals with HIV may have drug-resistant strains but it depends on the relative fitness of viral strains.

Conclusions

If viral load testing of people on ART is carried out on a yearly basis and virological failure leads to effective second-line therapy, then transmitted drug resistance could be reduced by 80%. Greater efforts are required for minimizing first-line failure, to detect virological failure earlier, and to procure access to second-line therapies.  相似文献   

19.
Mathematical models are powerful tools in HIV epidemiology, producing quantitative projections of key indicators such as HIV incidence and prevalence. In order to improve the accuracy of predictions, such models need to incorporate a number of behavioural and biological heterogeneities, especially those related to the sexual network within which HIV transmission occurs. An individual-based model, which explicitly models sexual partnerships, is thus often the most natural type of model to choose. In this paper we present PopART-IBM, a computationally efficient individual-based model capable of simulating 50 years of an HIV epidemic in a large, high-prevalence community in under a minute. We show how the model calibrates within a Bayesian inference framework to detailed age- and sex-stratified data from multiple sources on HIV prevalence, awareness of HIV status, ART status, and viral suppression for an HPTN 071 (PopART) study community in Zambia, and present future projections of HIV prevalence and incidence for this community in the absence of trial intervention.  相似文献   

20.

Background

Various metrics for HIV burden and treatment success [e.g. HIV prevalence, community viral load (CVL), population viral load (PVL), percent of HIV-positive persons with undetectable viral load] have important public health limitations for understanding disparities.

Methods and Findings

Using data from an ongoing HIV incidence cohort of black and white men who have sex with men (MSM), we propose a new metric to measure the prevalence of those at risk of transmitting HIV and illustrate its value. MSM with plasma VL>400 copies/mL were defined as having ‘transmission risk’. We calculated HIV prevalence, CVL, PVL, percent of HIV-positive with undetectable viral loads, and prevalence of plasma VL>400 copies/ml (%VL400) for black and white MSM. We used Monte Carlo simulation incorporating data on sexual mixing by race to estimate exposure of black and white HIV-negative MSM to a partner with transmission risk via unprotected anal intercourse (UAI). Of 709 MSM recruited, 42% (168/399) black and 14% (44/310) white MSM tested HIV-positive (p<.0001). No significant differences were seen in CVL, PVL, or percent of HIV positive with undetectable viral loads. The %VL400 was 25% (98/393) for black vs. 8% (25/310) for white MSM (p<.0001). Black MSM with 2 UAI partners were estimated to have 40% probability (95% CI: 35%, 45%) of having ≥1 UAI partner with transmission risk vs. 20% for white MSM (CI: 15%, 24%).

Discussion

Despite similarities in other metrics, black MSM in our cohort are three times as likely as white MSM to have HIV transmission risk. With comparable risk behaviors, HIV-negative black MSM have a substantially higher likelihood of encountering a UAI partner at risk of transmitting HIV. Our results support increasing HIV testing, linkage to care, and antiretroviral treatment of HIV-positive MSM to reduce prevalence of those with transmission risk, particularly for black MSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号