首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the evolution of hepatocytes isolated from 21-day fetuses and transplanted into spleens of Nagase analbuminemic rats which have negligible serum albumin levels due to a mutation affecting albumin mRNA processing. Albumin and alpha-fetoprotein expression, in addition to other parameters related to cellular proliferation status (thymidine kinase and proliferating cell nuclear antigen expression) were studied as indicative of the behavior and evolution of the cells. In recipient rats, only a few clusters of hepatocytes could be observed in the red pulp of the spleen 24 h after transplantation. The fetal hepatocytes migrated to the liver and could be seen in portal branches immediately after transplantation. Fifteen days later, albumin mRNA was detected in recipient livers and was expressed throughout the entire 3-month study. Alpha-fetoprotein was not detected. Cell proliferation was not relevant, although 3 months after transplantation, the proliferation rates appeared to show a tendency to increase. These data demonstrate that fetal hepatocytes transplanted into spleen migrate to liver, settle there and acquire an adult phenotype free of malignant transformation. Our study is a first step towards the thorough understanding of fetal hepatocyte transplantation. The next steps will involve in-depth studies of the possibilities of genetic manipulation to achieve a high degree of repopulation/expression, employing the least possible number of donor cells, and of how the cells reach the liver parenchyma, overcoming the endothelial barrier.  相似文献   

2.
The bile salt export pump (Bsep) mediates the hepatic excretion of bile acids, and its deficiency causes progressive familial intrahepatic cholestasis. The current study aimed to induce bile acid stress in Bsep−/− mice and to test the efficacy of hepatocyte transplantation in this disease model. We fed Bsep−/− and wild-type mice cholic acid (CA) or ursodeoxycholic acid (UDCA). Both CA and UDCA caused cholestasis and apoptosis in the Bsep−/− mouse liver. Wild-type mice had minimal liver injury and apoptosis when fed CA or UDCA, yet had increased proliferative activity. On the basis of the differential cytotoxicity of bile acids on the livers of wild-type and Bsep−/− mice, we transplanted wild-type hepatocytes into the liver of Bsep−/− mice fed CA or CA + UDCA. After 1–6 weeks, the donor cell repopulation and canalicular Bsep distribution were documented. An improved repopulation efficiency in the CA + UDCA-supplemented group was found at 2 weeks (4.76 ± 5.93% vs. 1.32 ± 1.48%, P = 0.0026) and at 4–6 weeks (12.09 ± 14.67% vs. 1.55 ± 1.28%, P < 0.001) compared with the CA-supplemented group. Normal-appearing hepatocytes with prominent nuclear staining for FXR were noted in the repopulated donor nodules. After hepatocyte transplantation, biliary total bile acids increased from 24% to 82% of the wild-type levels, among which trihydroxylated bile acids increased from 41% to 79% in the Bsep−/− mice. We conclude that bile acid stress triggers differential injury responses in the Bsep−/− and wild-type hepatocytes. This strategy changed the balance of the donor–recipient growth capacities and was critical for successful donor repopulation.  相似文献   

3.
4.

Background and Aims

Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders.

Methods

Hepatocytes (107) isolated from wildtype F344 rats or Wistar-RHA rats were engrafted into the livers of congeneic dipeptidylpeptidase IV deficient (DPPIV) rats or uridinediphosphoglucuronateglucuronosyltransferase-1A1-deficient jaundiced Gunn rats respectively by intrasplenic injection 24 hr after HIR (50 Gy) targeted to the median lobe, or median plus left liver lobes. An adenovector expressing hepatocyte growth factor (1011 particles) was injected intravenously 24 hr after transplantation.

Results

Three months after hepatocyte transplantation in DPPIV rats, 30–60% of the recipient hepatocytes were replaced by donor cells in the irradiated lobe, but not in the nonirradiated lobes. In Gunn rats receiving median lobe HIR, serum bilirubin declined from pretreatment levels of 5.17±0.78 mg/dl to 0.96±0.30 mg/dl in 8 weeks and remained at this level throughout the 16 week observation period. A similar effect was observed in the group, receiving median plus left lobe irradiation.

Conclusions

As little as 20% repopulation of 30% of the liver volume was sufficient to correct hyperbilirubinemia in Gunn rats, highlighting the potential of regiospecific HIR in hepatocyte transplantation-based therapy of inherited metabolic liver diseases.  相似文献   

5.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

6.
The multi-kinase inhibitor Sorafenib increases the survival of patients with advanced hepatocellular carcinoma (HCC). Current data suggest that Sorafenib inhibits cellular proliferation and angiogenesis and promotes apoptosis. However, the underlying pro-apoptotic molecular mechanisms are incompletely understood. Here we compared the pro-apoptotic and anti-proliferative properties of Sorafenib in murine hepatoma cells and syngeneic healthy hepatocytes in vitro and in animal models of HCC and liver regeneration in vivo. In vitro, we demonstrate that cell cycle activity and expression of anti-apoptotic Bcl-2 like proteins are similarly downregulated by Sorafenib in Hepa1-6 hepatoma cells and in syngeneic primary hepatocytes. However, Sorafenib-mediated activation of caspase-3 and induction of apoptosis were exclusively found in hepatoma cells, but not in matching primary hepatocytes. We validated these findings in vivo by applying an isograft HCC transplantation model and partial hepatectomy (PH) in C57BL/6 mice. Sorafenib treatment activated caspase-3 and thus apoptosis selectively in small tumor foci that originated from implanted Hepa1-6 cells but not in surrounding healthy hepatocytes. Similarly, Sorafenib did not induce apoptosis after PH. However, Sorafenib treatment transiently inhibited cell cycle progression and resulted in mitotic catastrophe and enhanced non-apoptotic liver injury during regeneration. Importantly, Sorafenib-mediated apoptosis in hepatoma cells was associated with the expression of p53-upregulated-modulator-of-apoptosis (PUMA). In contrast, regenerating livers after PH revealed downregulation of PUMA and were completely protected from Sorafenib-mediated apoptosis. We conclude that Sorafenib induces apoptosis selectively in hepatoma cells but not in healthy hepatocytes and can additionally increase non-apoptotic hepatocyte injury in the regenerating liver.  相似文献   

7.
Liver regeneration and cholestasis are associated with adaptive changes in expression of gap and tight junctions through signal transduction. The roles of stress responsitive MAP-kinase, p38 MAP-kinase, in the signaling pathway for gap junction protein, Cx32, and tight junction protein, claudin-1, were examined in rat liver in vivoand in vitro, including regeneration following partial hepatectomy and cholestasis after common bile duct ligation. Changes in the expression and function of Cx32 and claudin-1 in hepatocytes in vivowere studied using the p38 MAP-kinase inhibitor SB203580. Following partial hepatectomy and common bile duct ligation, down-regulation of Cx32 protein was inhibited by SB203580 treatment. Up-regulation of claudin-1 protein was enhanced by SB203580 treatment after partial hepatectomy but not common bile duct ligation. However, no change of the Ki-67 labeling index (which is a marker for cell proliferation) in the livers treated with SB203580, was observed compared to that without SB203580 treatment. In primary cultures of rat hepatocytes, however, treatment with a p38 MAP-kinase activator, anisomycin, decreased Cx32 and claudin-1 protein levels. p38 MAP-kinase may be an important signaling pathway for regulation of gap and tight junctions in hepatocytes. Changes of gap and tight junctions during liver regeneration and cholestasis are shown to be in part controlled via the p38 MAP-kinase signaling pathway and are independent of cell growth.  相似文献   

8.
9.
Enhancing endothelial barrier integrity for the treatment of acute lung injury (ALI) is an emerging novel therapeutic strategy. Our previous studies have demonstrated the essential role of FoxM1 in mediating endothelial regeneration and barrier repair following lipopolysaccharide-induced lung injury. However, it remains unclear whether FoxM1 expression is sufficient to promote endothelial repair in experimental models of sepsis. Here, employing the FoxM1 transgenic (FoxM1 Tg) mice, we showed that transgenic expression of FoxM1 promoted rapid recovery of endothelial barrier function and survival in a clinically relevant model of sepsis induced by cecal ligation and puncture (CLP). We observed lung vascular permeability was rapidly recovered and returned to levels similar to baseline at 48 h post-CLP challenge in FoxM1 Tg mice whereas it remained markedly elevated in WT mice. Lung edema and inflammation were resolved only in FoxM1 Tg mice at 24 h post-CLP. 5-bromo-2-deoxyuridine incorporation assay revealed a drastic induction of endothelial proliferation in FoxM1 Tg lungs at 24h post-CLP, correlating with early induction of expression of FoxM1 target genes essential for cell cycle progression. Additionally, deletion of FoxM1 in endothelial cells, employing the mouse model with endothelial cell-restricted disruption of FoxM1 (FoxM1 CKO) resulted in impaired endothelial repair following CLP challenge. Together, these data suggest FoxM1 expression in endothelial cells is necessary and sufficient to mediate endothelial repair and thereby promote survival following sepsis challenge.  相似文献   

10.
Grompe M 《Human cell》1999,12(4):171-180
Orthotopic liver transplantation is the treatment of choice for many inherited and acquired liver diseases. Unfortunately, the supply of donor organs is limiting and therefore many patients cannot benefit from this therapy. In contrast, hepatocyte suspensions can be isolated from a single donor liver can be transplanted into several hosts, and this procedure may help overcome the shortage in donor livers. In classic hepatocyte transplantation, however, only 1% of the liver mass or less can be replaced by donor cells. Recently though, we have used a mouse model of hereditary tyrosinemia to show that > 90% of host hepatocytes can be replaced by a small number of transplanted donor cells in a process we term "therapeutic liver repopulation". This phenomenon is analogous to repopulation of the hematopoietic system after bone marrow transplantation. Liver repopulation occurs when transplanted cells have a growth advantage in the setting of damage to recipient liver cells. Here we will review the current knowledge of this process and discuss the hopeful implications for treatment of liver diseases.  相似文献   

11.
The success of hepatocyte transplantation has been limited by the low efficiency of transplanted cell integration into liver parenchyma. Human fetal hepatic progenitor cells (hepatoblasts) engraft more effectively than adult hepatocytes in mouse livers. However, the signals required for their integration are not yet fully understood. We investigated the role of HGF on the migration and invasive ability of human hepatic progenitors in vitro and in vivo.Hepatoblasts were isolated from the livers of human fetuses between 10 and 12 weeks of gestation. Their invasive ability was assessed in the presence or absence of HGF. These cells were also transplanted into immunodeficient mice and analyzed by immunohistochemistry.In contrast to TNF-alpha, HGF increased the motogenesis and invasiveness of hepatoblasts, but not of human adult hepatocytes, via phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The invasive ability of human hepatoblasts correlated with the expression and secretion of matrix metalloproteinases (MMPs). Hepatoblasts stimulated with HGF prior transplantation into newborn mice migrated from the portal area into the hepatic parenchyma.Conclusions: In contrast to adult hepatocytes, hepatoblasts display invasive ability that can be modulated by HGF in vitro and in vivo.  相似文献   

12.

Background and Aim

Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP.

Methods

Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison.

Results

All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14.

Conclusion

GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be considered in planning in vivo experiments using GFP and in interpreting their results.  相似文献   

13.

Background

Liver injuries are important medical problems that require effective therapy. Stem cell or hepatocyte transplantation has the potential to restore function of the damaged liver and ameliorate injury. However, the regulatory factors crucial for the repair and regeneration after cell transplantation have not been fully characterized. Our study investigated the effects and the expression of the regulatory factors in mouse models of acute liver injury either transplanted with the induced pluripotent stem cells (iPS) or the hepatocytes that differentiated from iPS cells (iHL).

Methods/Principal Findings

Mice received CCl4 injection and were randomized to receive vehicle, iPS, or iHL transfusions vial tail veins and were observed for 24, 48 or 72 hours. The group of mice with iPS transplantation performed better than the group of mice receiving iHL in reducing the serum alanine aminotransferase, aspartate aminotransferase, and liver necrosis areas at 24 hours after CCl4 injury. Moreover, iPS significantly increased the numbers of proliferating hepatocytes at 48 hours. Cytokine array identified that chemokine IP-10 could be the potential regulatory factor that ameliorates liver injury. Further studies revealed that iPS secreted IP-10 in vitro and transfusion of iPS increased IP-10 protein and mRNA expressions in the injured livers in vivo. The primary hepatocytes and non-parenchyma cells were isolated from normal and injured livers. Hepatocytes from injured livers that received iPS treatment expressed more IP-10 mRNA than their non-hepatocyte counter-parts. In addition, animal studies revealed that administration of recombinant IP-10 (rIP-10) effectively reduced liver injuries while IP-10-neutralizing antibody attenuated the protective effects of iPS and decreased hepatocyte proliferation. Both iPS and rIP-10 significantly reduced the 72-hour mortality rate in mice that received multiple CCl4-injuries.

Conclusions/Significance

These findings suggested that IP-10 may have an important regulatory role in facilitating the repair and regeneration of injured liver after iPS transplantation.  相似文献   

14.
Monkey embryonic stem (ES) cells have characteristics that are similar to human ES cells, and might be useful as a substitute model for preclinical research. When embryoid bodies (EBs) formed from monkey ES cells were cultured, expression of many hepatocyte-related genes including cytochrome P450 (Cyp) 3a and Cyp7a1 was observed. Hepatocytes were immunocytochemically observed using antibodies against albumin (ALB), cytokeratin-8/18, and α1-antitrypsin in the developing EBs. The in vitro differentiation potential of monkey ES cells into the hepatic lineage prompted us to examine the transplantability of monkey EB cells. As an initial approach to assess the repopulation potential, we transplanted EB cells into immunodeficient urokinase-type plasminogen activator transgenic mice that undergo liver failure. After transplantation, the hepatocyte colonies expressing monkey ALB were observed in the mouse liver. Fluorescence in-situ hybridization revealed that the repopulating hepatocytes arise from cell fusion between transplanted monkey EB cells and recipient mouse hepatocytes. In contrast, neither cell fusion nor repopulation of hepatocytes was observed in the recipient liver after undifferentiated ES cell transplantation. These results indicate that the differentiated cells in developing monkey EBs, but not contaminating ES cells, generate functional hepatocytes by cell fusion with recipient mouse hepatocytes, and repopulate injured mouse liver.  相似文献   

15.
16.
Application of liver stem cells for cell therapy   总被引:3,自引:0,他引:3  
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.  相似文献   

17.
Recent liver regeneration studies indicate that maintaining hepatic Forkhead Box M1B (FoxM1B) expression in 12-month-old (old-aged) Transthyretin-FoxM1B transgenic mice increases hepatocyte proliferation and expression of cell cycle regulatory genes. Because these transgenic CD-1 mice maintain FoxM1B levels during the aging process, we conducted the current study to determine whether adenovirus delivery of the FoxM1B gene (AdFoxM1B) is sufficient to stimulate liver regeneration in old-aged Balb/c mice. Here we show that AdFoxM1B infection of old-aged mice caused a significant increase in FoxM1B expression, hepatocyte DNA replication, and mitosis following partial hepatectomy. This stimulation in hepatocyte S-phase progression was associated with diminished protein expression and perinuclear localization of cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) (p27) protein following partial hepatectomy. In contrast, old-aged mice infected with control virus displayed high hepatocyte levels of p27 protein, which had been localized to the nucleus prior to S-phase. Furthermore, we found that restoring FoxM1B expression did not influence p27 mRNA levels, and this new finding implicates FoxM1B in regulation of p27 protein levels. Likewise, AdFoxM1B-infected regenerating livers displayed elevated S-phase levels of Cdk2 kinase activity compared with old-aged mice infected with control virus. Furthermore, restoring FoxM1B expression in old-aged mice caused elevated levels of Cyclin B1, Cyclin B2, Cdc25B, Cdk1, and p55CDC mRNA as well as stimulating Cdc25B nuclear localization during liver regeneration, all of which are required for mitosis. These studies indicated that an acute delivery of the FoxM1B gene in old-aged mice is sufficient to re-establish proliferation of regenerating hepatocytes, suggesting that FoxM1B can be used for therapeutic intervention to alleviate the reduction in cellular proliferation observed in the elderly.  相似文献   

18.
19.
20.
Severely immunodeficient NOD/Shi-scid IL2Rgnull (NOG) mice are used as recipients for human tissue transplantation, which produces chimeric mice with various types of human tissue. NOG mice expressing transgenic urokinase-type plasminogen activator in the liver (uPA-NOG) were produced. Human hepatocytes injected into uPA-NOG mice repopulated the recipient livers with human cells. The uPA-NOG model has several advantages over previously produced chimeric mouse models of human liver: (1) the severely immunodeficient NOG background enables higher xenogeneic cell engraftment; (2) the absence of neonatal lethality enables mating of homozygotes, which increased the efficacy of homozygote production; and (3) donor xenogeneic human hepatocytes could be readily transplanted into young uPA-NOG mice, which provide easier surgical manipulation and improved recipient survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号