首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:构建人mir-122慢病毒表达载体,感染肝癌细胞HepG2,建立稳定表达mir-122的HepG2细胞系。方法:以人has-mir-122成熟序列,设计并合成引物,采用PCR的方法扩增目的基因,并连接到慢病毒表达质粒pGCSIL-GFP(含绿色荧光蛋白GFP基因)中。对重组质粒进行双酶切鉴定后,进行mir-122基因慢病毒(pGCSIL-GFP-miR-122)的包装及病毒滴度测定,用构建好的慢病毒表达载体感染HepG2细胞,qPCR检测感染后细胞中MIR-122的变化。通过流式细胞仪检测荧光蛋白GFP,westernblot检测mir-122靶分子CAT-1,验证pGCSIL-GFP-miR-122在HepG2细胞中的表达效果。结果:pGCSIL-GFP-miR-122经双酶切分析及测序,插入序列正确。qPCR检测显示转入病毒后mir-122在细胞中的表达显著提高。表明mir-122慢病毒表达载体构建成功。流式细胞仪根据GFP荧光筛选纯化感染后细胞,感染率达90%以上。Western blot显示mir-122明显抑制其靶分子表达。进一步验证pGCSIL-GFP-miR-122在细胞中的稳定表达。结论:成功构建mir-122慢病毒表达载体,并建立稳定表达的细胞系,为研究mir-122在人体所起的作用及功能机制打下基础。  相似文献   

2.
人肝脏特异性miR-122表达载体的构建及鉴定   总被引:3,自引:0,他引:3  
人肝脏特异性miRNA-122是肝脏中表达丰度最高的miRNA。为研究该miR-122的生物学功能,从HepG2细胞基因组中用PCR的方法扩增了miR-122的前体,构建了miR-122的表达载体pLMP-miR-122。pLMP-miR-122质粒转染人正常肝细胞系L-O2和肝癌细胞系HepG2后,细胞内成熟miRNA-122的表达量显著增加。该质粒与HBV1.3共转染HepG2细胞72h后,HBV的HBs和HBe蛋白水平的表达量均下降,说明miRNA-122参与了HBV基因的复制和表达的调控,为进一步研究miRNA-122的功能和其他一些肝病如HCC的调控机制打下基础。  相似文献   

3.
目的:构建人mir-122慢病毒表达载体,感染肝癌细胞HepG2,建立稳定表达mir-122的HepG2细胞系。方法:以人has-mir-122成熟序列,设计并合成引物,采用PCR的方法扩增目的基因,并连接到慢病毒表达质粒pGCSIL-GFP(含绿色荧光蛋白GFP基因)中。对重组质粒进行双酶切鉴定后,进行mir-122基因慢病毒(pGCSIL-GFP-miR-122)的包装及病毒滴度测定,用构建好的慢病毒表达载体感染HepG2细胞,qPCR检测感染后细胞中MIR-122的变化。通过流式细胞仪检测荧光蛋白GFP,westernblot检测mir-122靶分子CAT-1,验证pGCSIL-GFP-miR-122在HepG2细胞中的表达效果。结果:pGCSIL-GFP-miR-122经双酶切分析及测序,插入序列正确。qPCR检测显示转入病毒后mir-122在细胞中的表达显著提高。表明mir-122慢病毒表达载体构建成功。流式细胞仪根据GFP荧光筛选纯化感染后细胞,感染率达90%以上。Western blot显示mir-122明显抑制其靶分子表达。进一步验证pGCSIL-GFP-miR-122在细胞中的稳定表达。结论:成功构建mir-122慢病毒表达载体,并建立稳定表达的细胞系,为研究mir-122在人体所起的作用及功能机制打下基础。  相似文献   

4.
Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G(0)/G(1) phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G(0)/G(1) phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells.  相似文献   

5.
ABSTRACT

Citrus plants are rich in flavonoids and beneficial for lipid metabolism. However, the mechanism has not been fully elucidated. Both citrus peel flavonoid extracts (CPFE) and a mixture of their primary flavonoid compounds, namely, nobiletin, tangeretin and hesperidin, citrus flavonoid purity mixture (CFPM), were found to have lipid-lowering effects on oleic acid-induced lipid accumulation in HepG2 cells. The carnitine palmitoyltransferase 1α (CPT1α) gene was markedly increased, while the fatty acid synthase (FAS) gene was significantly decreased by both CPFE and CFPM in oleic acid-treated HepG2 cells. Flavonoid compounds from citrus peel suppressed miR-122 and miR-33 expression, which were induced by oleic acid. Changes in miR-122 and miR-33 expression, which subsequently affect the expression of their target mRNAs FAS and CPT1α, are most likely the principal mechanisms leading to decreased lipid accumulation in HepG2 cells. Citrus flavonoids likely regulate lipid metabolism by modulating the expression levels of miR-122 and miR-33.  相似文献   

6.
The liver-specific microRNA miR-122 has been shown to be required for the replication of hepatitis C virus (HCV) in the hepatoma cell line Huh7. The aim of this study was to test if HCV replication can be modulated by exogenously expressed miR-122 in human embryonic kidney epithelial cells (HEK-293). Our results demonstrate that miR-122 enhances the colony formation efficiency of the HCV replicon and increases the steady-state level of HCV RNA in HEK-293 cells. Therefore, we conclude that although miR-122 is not absolutely required, it greatly enhances HCV replication in nonhepatic cells.  相似文献   

7.
8.
We aim to uncover the methylation of microRNA-7 (miR-7) promoter in osteosarcoma (OS) and the inner mechanism of miR-7 on the progression of OS cells. Expression and methylation state of miR-7 in OS tissues and cells were detected. With the aim to unearth the ability of miR-7 in OS, the proliferation, cell cycle progression, apoptosis, invasion, migration of OS cells, and the tumor growth in nude mice were determined. Meanwhile, IGF1R expression was detected and the association between miR-7 and IGF1R was confirmed. The proliferating cell nuclear antigen (PCNA) expression was tested by immunohistochemical staining, and the lung metastasis was observed by H&E staining. miR-7 expression was decreased and methylation state of miR-7 was increased in OS tissues and cells. Upregulated miR-7 inhibited proliferation, cell cycle progression, invasion,and migration, while inducing apoptosis of OS cells and the tumor growth as well as PCNA expression in nude mice. Expression of IGF1R was downregulated in OS cells with overexpression of miR-7. Experiments verified the binding site between miR-7 and IGF1R. Our study demonstrates that abnormal methylation of miR-7 contributes to decreased miR-7 in OS. In addition, miR-7 represses the initiation and progression of OS cells through the inhibition of IGF1R.  相似文献   

9.
Chen HL  Huang JY  Chen CM  Chu TH  Shih C 《PloS one》2012,7(4):e34116
Pancreatic acinar cells AR42J-B13 can transdifferentiate into hepatocyte-like cells permissive for efficient hepatitis B virus (HBV) replication. Here, we profiled miRNAs differentially expressed in AR42J-B13 cells before and after transdifferentiation to hepatocytes, using chip-based microarray. Significant increase of miRNA expression, including miR-21, miR-22, and miR-122a, was confirmed by stem-loop real-time PCR and Northern blot analyses. In contrast, miR-93, miR-130b, and a number of other miRNAs, were significantly reduced after transdifferentiation. To investigate the potential significance of miR-22 in hepatocytes, we generated cell lines stably expressing miR-22. By 2D-DIGE, LC-MS/MS, and Western blot analyses, we identified several potential target genes of miR-22, including parathymosin. In transdifferentiated hepatocytes, miR-22 can inhibit both mRNA and protein expression of parathymosin, probably through a direct and an indirect mechanism. We tested two computer predicted miR-22 target sites at the 3' UTR of parathymosin, by the 3' UTR reporter gene assay. Treatment with anti-miR-22 resulted in significant elevation of the reporter activity. In addition, we observed an in vivo inverse correlation between miR-22 and parathymosin mRNA in their tissue distribution in a rat model. The phenomenon that miR-22 can reduce parathymosin protein was also observed in human hepatoma cell lines Huh7 and HepG2. So far, we detected no major effect on several transdifferentiation markers when AR42J-B13 cells were transfected with miR-22, or anti-miR-22, or a parathymosin expression vector, with or without dexamethasone treatment. Therefore, miR-22 appears to be neither necessary nor sufficient for transdifferentiation. We discussed the possibility that altered expression of some other microRNAs could induce cell cycle arrest leading to transdifferentiation.  相似文献   

10.
11.
Insulin resistance (IR) is a common etiology of type 2 diabetes (T2D) defined by a state of decreased reactivity to insulin in multiple organs, such as the liver. This study aims to investigate how microRNA‐122‐5p (miR‐122) regulates the hepatic IR in vitro. We first found that the miR‐122 level was upregulated in the liver of rats fed with a high‐fat diet and injected with streptozotocin (T2D rats), while the expression level of insulin‐like growth factor 1 receptor (IGF‐1R), a potential target of miR‐122, was downregulated in the diabetic liver. In vitro, glucosamine‐induced IR was introduced in HepG2 hepatic cells, and the levels of miR‐122 and IGF‐1R were further assessed. An increase of miR‐122 level and a decrease of IGF‐IR level were observed in IR hepatic cells, which was the same as that in the diabetic liver. Results of the luciferase reporter assay validated IGF‐1R as a direct target of miR‐122. Moreover, in IR HepG2 cells, antagonizing miR‐122 with its specific inhibitor enhanced glucose uptake and suppressed the expression of glucose 6‐phosphatase and phosphoenolpyruvate carboxykinase, two key enzymes in regulating gluconeogenesis. Such alterations induced by the miR‐122 inhibitor in IR hepatic cells were impaired when IGF‐1R was simultaneously knocked down. In addition, the PI3K/Akt pathway was deactivated in IR cells, and then reactivated with miR‐122 inhibitor transfection. In conclusion, our study demonstrates that miR‐122 is able to regulate IR in hepatic cells by targeting IGF‐1R.  相似文献   

12.
Hepatitis C virus (HCV) replicates preferentially in the liver, and in most cases, the HCV infection becomes chronic and often results in hepatocellular carcinoma. When the HCV plus-strand RNA genome has been delivered to the cytosol of the infected cell, its translation is directed by the internal ribosome entry site (IRES) in the 5′-untranslated region (5′-UTR) of the viral RNA. Thereby, IRES activity is modulated by several host factors. In particular, the liver-specific microRNA-122 (miR-122) interacts with two target sites in the HCV 5′-UTR and stimulates HCV translation, thereby most likely contributing to HCV liver tropism. Here, we show that HCV IRES-dependent translation efficiency in the hepatoma cell line Huh7 is highest during the G0 and G1 phases of the cell cycle but significantly drops during S phase and even more in the G2/M phase. The superimposed stimulation of HCV translation by ectopic miR-122 works best during G0, G1 and G2/M phases but is lower during S phase. However, the levels of Ago2 protein do not substantially change during cell cycle phases, indicating that other cellular factors involved in HCV translation stimulation by miR-122 may be differentially expressed in different cell cycle phases. Moreover, the levels of endogenously expressed miR-122 in Huh7 cells are lowest in S phase, indicating that the predominant G0/G1 state of non-dividing hepatocytes in the liver facilitates high expression of the HCV genome and stimulation by miR-122, with yet-unknown factors involved in the differential extent of stimulation by miR-122.Key words: HCV, translation, miR-122, microRNA, miRNA, Ago, Ago2  相似文献   

13.
MicroRNAs are related to the development of hepatocellular carcinoma and can serve as potential therapeutic targets. Therapeutic strategies increasing tumor-suppressive microRNAs and reducing oncogenic microRNAs have been developed. Herein, the effects of simultaneously altering two microRNAs using MS2 virus-like particles were studied. The sequences of microRNA-21-sponge and pre-microRNA-122 were connected and cloned into a virus-like particle expression vector. Virus-like particles containing microRNA-21-sponge and pre-microRNA-122 sequences were prepared and crosslinked with a cell-specific peptide targeting hepatocellular carcinoma cells. Delivery effects were studied using RT-qPCR and functional assays to investigate the level of target mRNAs, cell toxicity, and the effects of proliferation, invasion, and migration. Virus-like particles delivered miR-21-sponge into cells, with the Ct value reaching 10 at most. The linked pre-miR-122 was processed into mature miR-122. The mRNA targets of miR-21 were derepressed as predicted and upregulated 1.2–2.8-fold, and the expression of proteins was elevated correspondingly. Proliferation, migration, and invasion of HCC cells were inhibited by miR-21-sponge. Simultaneous delivery of miR-21-sponge and miR-122 further decreased proliferation, migration, and invasion by up to 34%, 63%, and 65%, respectively. And the combination promoted the apoptosis of HCC cells. In conclusion, delivering miR-21-sponge and miR-122 using virus-like particles modified by cell-specific peptides is an effective and convenient strategy to correct microRNA dysregulation in hepatocellular carcinoma cells and is a promising therapeutic strategy for hepatocellular carcinoma.  相似文献   

14.
15.
16.
miRNAs are emerging as critical regulators in carcinogenesis and tumor progression. Recently, microRNA-122 (miR-122) has been proved to play an important role in hepatocellular carcinoma, but its functions in the context of breast cancer (BC) remain unknown. In this study, we report that miR-122 is commonly downregulated in BC specimens and BC cell lines with important functional consequences. Overexpression of miR-122 not only dramatically suppressed cell proliferation, colony formation by inducing G1-phase cell-cycle arrest in vitro, but also reduced tumorigenicity in vivo. We then screened and identified a novel miR-122 target, insulin-like growth factor 1 receptor (IGF1R), and it was further confirmed by luciferase assay. Overexpression of miR-122 would specifically and markedly reduce its expression. Similar to the restoring miR-122 expression, IGF1R downregulation suppressed cell growth and cell-cycle progression, whereas IGF1R overexpression rescued the suppressive effect of miR-122. To identify the mechanisms, we investigated the Akt/mTOR/p70S6K pathway and found that the expression of Akt, mTOR and p70S6K were suppressed, whereas re-expression of IGF1R which did not contain the 3′UTR totally reversed the inhibition of Akt/mTOR/p70S6K signal pathway profile. We also identified a novel, putative miR-122 target gene, PI3CG, a member of PI3K family, which further suggests miR-122 may be a key regulator of the PI3K/Akt pathway. In clinical specimens, IGF1R was widely overexpressed and its mRNA levels were inversely correlated with miR-122 expression. Taken together, our results demonstrate that miR-122 functions as a tumor suppressor and plays an important role in inhibiting the tumorigenesis through targeting IGF1R and regulating PI3K/Akt/mTOR/p70S6K pathway. Given these, miR-122 may serve as a novel therapeutic or diagnostic/prognostic-target for treating BC.  相似文献   

17.
摘要 目的:探讨有机阴离子转运多肽1B3(OATP1B3)在肝细胞癌(肝癌)组织中的表达及作用。方法:通过免疫组化实验和免疫印迹试验(Western blot)检测肝癌组织及其癌旁组织中OATP1B3情况,并分析其与患者临床病理特征的相关性。采用实时荧光定量聚合酶链反应(qRT-PCR)检测OATP1B3在多株肝癌细胞中的表达情况,选择表达量相对较低的人肝癌细胞(HepG2和Huh7)细胞进行过表达实验,细胞毒实验(MTT)和流式细胞术分别检测OATP1B3对细胞增殖及凋亡的影响。结果:肝癌组织中OATP1B3表达水平明显低于癌旁组织(P<0.05),且与患者恶性肿瘤国际临床病期分类(TNM分期)、肿瘤分化程度、有无肿瘤复发显著相关(P<0.05)。过表达OATP1B3可抑制HepG2和Huh7细胞增殖,促进细胞凋亡。结论:OATP1B3在肝癌组织中低表达,上调其表达可抑制肝癌细胞增殖和促进细胞凋亡。OATP1B3可能是肝癌的抑癌基因,对肝癌的发生、发展具有重要作用。  相似文献   

18.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

19.
BackgroundSevoflurane (SEVO) inactivates the aggressiveness of hepatocellular carcinoma (HCC) cells by mediating microRNAs (miRNAs). Hence, we delved into the functional role of miR-148a-3p mediated by SEVO in HCC.MethodsLiver cells (L02) and HCC cells (HCCLM3 and Huh7) were exposed to SEVO to detect cell viability in HCC. HCCLM3 and Huh7 cells were treated with restored miR-148a-3p or depleted Rho-associated protein kinase 1 (ROCK1) to elucidate their roles in HCC cells' biological characteristics. HCCLM3 and Huh7 cells were treated with SEVO, and/or vectors that changed miR-148a-3p or ROCK1 expression to identify their combined functions in HCC cell progression. Tumor xenograft in nude mice was performed to determine growth ability of tumor. The target relationship between miR-148a-3p and ROCK1 was verified.ResultsSEVO inhibited proliferation, invasion and migration and enhanced apoptosis of HCCLM3 and Huh7 cells. MiR-148a-3p up-regulation or ROCK1 down-regulation inhibited HCCLM3 and Huh7 cell progression. ROCK1 was determined to be target gene of miR-148a-3p. Down-regulating miR-148a-3p or overexpressing ROCK1 mitigated cell aggressiveness inhibition caused by SEVO.ConclusionOur study elucidates that microRNA-148a-3p enhances the effects of sevoflurane on inhibiting proliferation, invasion and migration and enhancing apoptosis of HCC cells through suppression of ROCK1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号