首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
6.
7.

Background

Many computational microRNA target prediction tools are focused on several key features, including complementarity to 5′seed of miRNAs and evolutionary conservation. While these features allow for successful target identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement.

Methodology/Principal Findings

We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of our energy-based model leads to ∼3–5-fold enrichment on highly down-regulated targets, and allows for prediction of strictly imperfect targets with enrichment above baseline.

Conclusions/Significance

In conclusion, our results indicate significant promise for energy-based miRNA target prediction that includes a broader range of targets without having to use conservation or impose stringent seed match rules.  相似文献   

8.

Background

The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets.

Methodology/Principal Findings

We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279–modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively.

Conclusions/Significance

Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals.  相似文献   

9.

Background

Toll-like receptors (TLR) are essential activators of the innate part of the vertebrate immune system. In this study, we analysed the interspecific variability of three TLR (bacterial-sensing TLR4 and TLR5 and viral-sensing TLR7) within the Galloanserae bird clade, investigated their phylogeny, assessed their structural conservation and estimated site-specific selection pressures.

Results

Physiochemical properties varied according to the TLR analysed, mainly with regards to the surface electrostatic potential distribution. The predicted ligand-binding features (mainly in TLR4 and TLR5) differed between the avian proteins and their fish and mammalian counterparts, but also varied within the Galloanserae birds. We identified 20 positively selected sites in the three TLR, among which several are topologically close to ligand-binding sites reported for mammalian and fish TLR. We described 26, 28 and 25 evolutionarily non-conservative sites in TLR4, TLR5 and TLR7, respectively. Thirteen of these sites in TLR4, and ten in TLR5 were located in functionally relevant regions. The variability appears to be functionally more conserved for viral-sensing TLR7 than for the bacterial-sensing TLR. Amino-acid positions 268, 270, 343, 383, 444 and 471 in TLR4 and 180, 183, 209, 216, 264, 342 and 379 in TLR5 are key candidates for further functional research.

Conclusions

Host-pathogen co-evolution has a major effect on the features of host immune receptors. Our results suggest that avian and mammalian TLR may be differentially adapted to pathogen-derived ligand recognition. We have detected signatures of positive selection even within the Galloanserae lineage. To our knowledge, this is the first study to depict evolutionary pressures on Galloanserae TLR and to estimate the validity of current knowledge on TLR function (based on mammalian and chicken models) for non-model species of this clade.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0072-6) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
13.

Background

The p53 homologs, p63 and p73, share ∼85% amino acid identity in their DNA-binding domains, but they have distinct biological functions.

Principal Findings

Using chromatin immunoprecipitation and high-resolution tiling arrays covering the human genome, we identify p73 DNA binding sites on a genome-wide level in ME180 human cervical carcinoma cells. Strikingly, the p73 binding profile is indistinguishable from the previously described binding profile for p63 in the same cells. Moreover, the p73∶p63 binding ratio is similar at all genomic loci tested, suggesting that there are few, if any, targets that are specific for one of these factors. As assayed by sequential chromatin immunoprecipitation, p63 and p73 co-occupy DNA target sites in vivo, suggesting that p63 and p73 bind primarily as heterotetrameric complexes in ME180 cells.

Conclusions

The observation that p63 and p73 associate with the same genomic targets suggest that their distinct biological functions are due to cell-type specific expression and/or protein domains that involve functions other than DNA binding.  相似文献   

14.

Background

Small secreted proteins (SSPs) are employed by plant pathogenic fungi as essential strategic tools for their successful colonization. SSPs are often species-specific and so far only a few widely phylogenetically distributed SSPs have been identified.

Results

A novel fungal SSP family consisting of 107 members was identified in the poplar tree fungal pathogen Marssonina brunnea, which accounts for over 17% of its secretome. We named these proteins IGY proteins (IGYPs) based on the conserved three amino acids at the N-terminus. In spite of overall low sequence similarity among IGYPs; they showed conserved N- and C-terminal motifs and a unified gene structure. By RT-PCR-seq, we analyzed the IGYP gene models and validated their expressions as active genes during infection. IGYP homologues were also found in 25 other Dikarya fungal species, all of which shared conserved motifs and the same gene structure. Furthermore, 18 IGYPs from 11 fungi also shared similar genomic contexts. Real-time RT-PCR showed that 8 MbIGYPs were highly expressed in the biotrophic stage. Interestingly, transient assay of 12 MbIGYPs showed that the MbIGYP13 protein induced cell death in resistant poplar clones.

Conclusions

In total, 154 IGYPs in 26 fungi of the Dikarya subkingdom were discovered. Gene structure and genomic context analyses indicated that IGYPs originated from a common ancestor. In M. brunnea, the expansion of highly divergent MbIGYPs possibly is associated with plant-pathogen arms race.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1151) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.

Methods

Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.

Conclusions

This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.  相似文献   

16.

Background

Diagnosis of Trypanosoma cruzi infection by direct pathogen detection is complicated by the low parasite burden in subjects persistently infected with this agent of human Chagas disease. Determination of infection status by serological analysis has also been faulty, largely due to the lack of well-characterized parasite reagents for the detection of anti-parasite antibodies.

Methods

In this study, we screened more than 400 recombinant proteins of T. cruzi, including randomly selected and those known to be highly expressed in the parasite stages present in mammalian hosts, for the ability to detect anti-parasite antibodies in the sera of subjects with confirmed or suspected T. cruzi infection.

Findings

A set of 16 protein groups were identified and incorporated into a multiplex bead array format which detected 100% of >100 confirmed positive sera and also documented consistent, strong and broad responses in samples undetected or discordant using conventional serologic tests. Each serum had a distinct but highly stable reaction pattern. This diagnostic panel was also useful for monitoring drug treatment efficacy in chronic Chagas disease.

Conclusions

These results substantially extend the variety and quality of diagnostic targets for Chagas disease and offer a useful tool for determining treatment success or failure.  相似文献   

17.
18.

Background

Identifying drug targets is a critical step in pharmacology. Drug phenotypic and chemical indexes are two important indicators in this field. However, in previous studies, the indexes were always isolated and the candidate proteins were often limited to a small subset of the human genome.

Methodology/Principal Findings

Based on the correlations observed in pharmacological and genomic spaces, we develop a computational framework, drugCIPHER, to infer drug-target interactions in a genome-wide scale. Three linear regression models are proposed, which respectively relate drug therapeutic similarity, chemical similarity and their combination to the relevance of the targets on the basis of a protein-protein interaction network. Typically, the model integrating both drug therapeutic similarity and chemical similarity, drugCIPHER-MS, achieved an area under the Receiver Operating Characteristic (ROC) curve of 0.988 in the training set and 0.935 in the test set. Based on drugCIPHER-MS, a genome-wide map of drug biological fingerprints for 726 drugs is constructed, within which unexpected drug-drug relations emerged in 501 cases, implying possible novel applications or side effects.

Conclusions/Significance

Our findings demonstrate that the integration of phenotypic and chemical indexes in pharmacological space and protein-protein interactions in genomic space can not only speed the genome-wide identification of drug targets but also find new applications for the existing drugs.  相似文献   

19.
20.

Background

Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions.

Results

By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals.

Conclusions

We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号