首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.  相似文献   

2.
To minimize the risk of colliding with the ground or other obstacles, flying animals need to control both their ground speed and ground height. This task is particularly challenging in wind, where head winds require an animal to increase its airspeed to maintain a constant ground speed and tail winds may generate negative airspeeds, rendering flight more difficult to control. In this study, we investigate how head and tail winds affect flight control in the honeybee Apis mellifera, which is known to rely on the pattern of visual motion generated across the eye—known as optic flow—to maintain constant ground speeds and heights. We find that, when provided with both longitudinal and transverse optic flow cues (in or perpendicular to the direction of flight, respectively), honeybees maintain a constant ground speed but fly lower in head winds and higher in tail winds, a response that is also observed when longitudinal optic flow cues are minimized. When the transverse component of optic flow is minimized, or when all optic flow cues are minimized, the effect of wind on ground height is abolished. We propose that the regular sidewards oscillations that the bees make as they fly may be used to extract information about the distance to the ground, independently of the longitudinal optic flow that they use for ground speed control. This computationally simple strategy could have potential uses in the development of lightweight and robust systems for guiding autonomous flying vehicles in natural environments.  相似文献   

3.
Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects’ abilities and better understanding their flight.  相似文献   

4.
To further elucidate the mechanisms underlying insects’ height and speed control, we trained outdoor honeybees to fly along a high-roofed tunnel, part of which was equipped with a moving floor. Honeybees followed the stationary part of the floor at a given height. On encountering the moving part of the floor, which moved in the same direction as their flight, honeybees descended and flew at a lower height, thus gradually restoring their ventral optic flow (OF) to a similar value to that they had percieved when flying over the stationary part of the floor. This was therefore achieved not by increasing their airspeed, but by lowering their height of flight. These results can be accounted for by a control system called an optic flow regulator, as proposed in previous studies. This visuo-motor control scheme explains how honeybees can navigate safely along tunnels on the sole basis of OF measurements, without any need to measure either their speed or the clearance from the surrounding walls.  相似文献   

5.
Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System") model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.  相似文献   

6.
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations.  相似文献   

7.
Although the visual flight control strategies of flying insects have evolved to cope with the complexity of the natural world, studies investigating this behaviour have typically been performed indoors using simplified two-dimensional artificial visual stimuli. How well do the results from these studies reflect the natural behaviour of flying insects considering the radical differences in contrast, spatial composition, colour and dimensionality between these visual environments? Here, we aim to answer this question by investigating the effect of three- and two-dimensional naturalistic and artificial scenes on bumblebee flight control in an outdoor setting and compare the results with those of similar experiments performed in an indoor setting. In particular, we focus on investigating the effect of axial (front-to-back) visual motion cues on ground speed and centring behaviour. Our results suggest that, in general, ground speed control and centring behaviour in bumblebees is not affected by whether the visual scene is two- or three dimensional, naturalistic or artificial, or whether the experiment is conducted indoors or outdoors. The only effect that we observe between naturalistic and artificial scenes on flight control is that when the visual scene is three-dimensional and the visual information on the floor is minimised, bumblebees fly further from the midline of the tunnel. The findings presented here have implications not only for understanding the mechanisms of visual flight control in bumblebees, but also for the results of past and future investigations into visually guided flight control in other insects.  相似文献   

8.
The object of this study is to mathematically specify important characteristics of visual flow during translation of the eye for the perception of depth and self-motion. We address various strategies by which the central nervous system may estimate self-motion and depth from motion parallax, using equations for the visual velocity field generated by translation of the eye through space. Our results focus on information provided by the movement and deformation of three-dimensional objects and on local flow behavior around a fixated point. All of these issues are addressed mathematically in terms of definite equations for the optic flow. This formal characterization of the visual information presented to the observer is then considered in parallel with other sensory cues to self-motion in order to see how these contribute to the effective use of visual motion parallax, and how parallactic flow can, conversely, contribute to the sense of self-motion. This article will focus on a central case, for understanding of motion parallax in spacious real-world environments, of monocular visual cues observable during pure horizontal translation of the eye through a stationary environment. We suggest that the global optokinetic stimulus associated with visual motion parallax must converge in significant fashion with vestibular and proprioceptive pathways that carry signals related to self-motion. Suggestions of experiments to test some of the predictions of this study are made.  相似文献   

9.
Although considerable effort has been devoted to investigating how birds migrate over large distances, surprisingly little is known about how they tackle so successfully the moment-to-moment challenges of rapid flight through cluttered environments [1]. It has been suggested that birds detect and avoid obstacles [2] and control landing maneuvers [3-5] by using cues derived from the image motion that is generated in the eyes during flight. Here we investigate the ability of budgerigars to fly through narrow passages in a collision-free manner, by filming their trajectories during flight in a corridor where the walls are decorated with various visual patterns. The results demonstrate, unequivocally and for the first time, that birds negotiate narrow gaps safely by balancing the speeds of image motion that are experienced by the two eyes and that the speed of flight is regulated by monitoring the speed of image motion that is experienced by the two eyes. These findings have close parallels with those previously reported for flying insects [6-13], suggesting that some principles of visual guidance may be shared by all diurnal, flying animals.  相似文献   

10.
Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.  相似文献   

11.
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.  相似文献   

12.
As we move through the world, information can be combined from multiple sources in order to allow us to perceive our self-motion. The vestibular system detects and encodes the motion of the head in space. In addition, extra-vestibular cues such as retinal-image motion (optic flow), proprioception, and motor efference signals, provide valuable motion cues. Here I focus on the coding strategies that are used by the brain to create neural representations of self-motion. I review recent studies comparing the thresholds of single versus populations of vestibular afferent and central neurons. I then consider recent advances in understanding the brain's strategy for combining information from the vestibular sensors with extra-vestibular cues to estimate self-motion. These studies emphasize the need to consider not only the rules by which multiple inputs are combined, but also how differences in the behavioral context govern the nature of what defines the optimal computation.  相似文献   

13.
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment.  相似文献   

14.
The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.  相似文献   

15.
Simultaneous object motion and self-motion give rise to complex patterns of retinal image motion. In order to estimate object motion accurately, the brain must parse this complex retinal motion into self-motion and object motion components. Although this computational problem can be solved, in principle, through purely visual mechanisms, extra-retinal information that arises from the vestibular system during self-motion may also play an important role. Here we investigate whether combining vestibular and visual self-motion information improves the precision of object motion estimates. Subjects were asked to discriminate the direction of object motion in the presence of simultaneous self-motion, depicted either by visual cues alone (i.e. optic flow) or by combined visual/vestibular stimuli. We report a small but significant improvement in object motion discrimination thresholds with the addition of vestibular cues. This improvement was greatest for eccentric heading directions and negligible for forward movement, a finding that could reflect increased relative reliability of vestibular versus visual cues for eccentric heading directions. Overall, these results are consistent with the hypothesis that vestibular inputs can help parse retinal image motion into self-motion and object motion components.  相似文献   

16.
The retinal image flow a blowfly experiences in its daily life on the wing is determined by both the structure of the environment and the animal’s own movements. To understand the design of visual processing mechanisms, there is thus a need to analyse the performance of neurons under natural operating conditions. To this end, we recorded flight paths of flies outdoors and reconstructed what they had seen, by moving a panoramic camera along exactly the same paths. The reconstructed image sequences were later replayed on a fast, panoramic flight simulator to identified, motion sensitive neurons of the so-called horizontal system (HS) in the lobula plate of the blowfly, which are assumed to extract self-motion parameters from optic flow. We show that under real life conditions HS-cells not only encode information about self-rotation, but are also sensitive to translational optic flow and, thus, indirectly signal information about the depth structure of the environment. These properties do not require an elaboration of the known model of these neurons, because the natural optic flow sequences generate—at least qualitatively—the same depth-related response properties when used as input to a computational HS-cell model and to real neurons.  相似文献   

17.
The main subject of this study was the swimming behaviour of upriver migrating sea lamprey, Petromyzon marinus , with particular focus on identification of their swim strategies to overcome areas of difficult passage. A biotelemetry technique (electromyogram telemetry) was used to register muscle activity of the tagged animals. In the 2005 spawning season, five adult sea lampreys were surgically tagged and released in the field. Before release, electromyogram (EMG) records were calibrated with the P. marinus swimming speed in a swim tunnel. Differences between ground speed and swimming speed in the wild suggest that the calibrated CEMG (coded electromyogram) transmitter output corresponds to an activity index, and cannot be properly related to actual swimming speed. This study notes the need to confirm the laboratory calibration curves, to ascertain their use in determining swimming speed of tagged fish in the wild. In 2006, in order to confirm the field results seven adult sea lampreys were tagged, calibrated in the laboratory and released in a 30-m long experimental outdoor canal. The results were similar: observed swimming speed was generally higher when compared with the swimming speed obtained with the EMG signal. In the river, when swimming through slow-flow stretches, sea lampreys maintained a constant pattern of activity, attaining an average ground speed of 0.76 BL s−1 (2.5 km h−1). When sea lampreys encountered rapid flow reaches they alternated between short movements ( c. 67 s) and periods of rest ( c. 99 s). In each swim bout they progressed approximately 14 m; to overcome more difficult obstacles sea lampreys increased their number of burst movements instead of longer or more violent swimming events. About 43% of the time negotiating difficult passage areas was spent in resting by attaching motionless to the substrate with their oral disk.  相似文献   

18.
Research into dolphin swimming historically was guided by false assumptions pertaining to maximum speed. Accurate measurements on swimming speed and duration of effort of free-ranging dolphins are rare. To examine the variance of maximum swimming speeds, nearly 2,000 speed measurements were obtained for both captive and free-ranging dolphins, including Tursiops truncatus, Pseudorca crassidens, Delphinus capensis , and Delphinus delpbis . Measurements were made from videotapes of dolphins trained to swim fast around a large pool or jumping to a maximum height, videotapes of captured wild dolphins immediately after release, and sequential aerial photographs of a school of free-ranging dolphins startled by a passing airplane. Maximum horizontal speeds for trained animals were 8.2 m/sec for T. truncatus , 8.0 m/sec for D. delphis , and 8.0 m/sec for P. crassidens . Maximum speeds for T. truncatus swimming upwards, prior to vertical leaps ranged from 8.2 to 11.2 m/sec. Wild T. truncatus demonstrated a maximum speed of 5.7 m/sec. Maximum swimming speed of free-ranging D. capensis responding to multiple passes by a low flying airplane was 6.7 m/sec. There was no evidence that the freeranging dolphins have superior swimming capabilities to captive animals. The results of this study imply that realistic maximum swimming speeds for dolphins are lower than previous reports which were based on sparse data and imprecise measurement techniques.  相似文献   

19.
Insects flying in a horizontal pheromone plume must attend to visual cues to ensure that they make upwind progress. Moreover, it is suggested that flying insects will also modulate their flight speed to maintain a constant retinal angular velocity of terrestrial contrast elements. Evidence from flies and honeybees supports such a hypothesis, although tests with male moths and beetles flying in pheromone plumes are not conclusive. These insects typically fly faster at higher elevations above a high‐contrast ground pattern, as predicted by the hypothesis, although the increase in speed is not sufficient to demonstrate quantitatively that they maintain constant visual angular velocity of the ground pattern. To test this hypothesis more rigorously, the flight speed of male oriental fruit moths (OFM) Grapholita molesta Busck (Lepidoptera: Tortricidae) flying in a sex pheromone plume in a laboratory wind tunnel is measured at various heights (5–40 cm) above patterns of different spatial wavelength (1.8–90°) in the direction of flight. The OFM modulate their flight speed three‐fold over different patterns. They fly fastest when there is no pattern in the tunnel or the contrast elements are too narrow to resolve. When the spatial wavelength of the pattern is sufficiently wide to resolve, moths fly at a speed that tends to maintain a visual contrast frequency of 3.5 ± 3.2 Hz rather than a constant angular velocity, which varies from 57 to 611° s?1. In addition, for the first time, it is also demonstrated that the width of a contrast pattern perpendicular to the flight direction modulates flight speed.  相似文献   

20.
ABSTRACT. In a horizontal wind tunnel, Drosophila flew at almost constant height along tracks up to 2 m long. The flies rose or sank only slowly when it was so dark that they no longer responded to movements of the tunnel floor, suggesting that their height control is mediated, at least partly, by responses to their movement relative to the air. In the light, the flies maintained height better than in the dark and were very responsive to movements around them. They faithfully followed the up and down movements of horizon screens at their sides whether they were flying in still air or against a wind, even in the presence of many other stationary visual cues. The flies did not respond by compensatory height changes to real vertical movements of a patterned horizontal disc beneath them, nor to changes in the size of the floor pattern. They did respond to horizontal acceleration of the floor pattern in the direction opposite to their flight (optically simulating a descent by the fly), by an apparently compensatory increase in height, but they also rose (instead of sinking) in response to floor acceleration in the direction of their flight. When the floor was accelerated in either direction they showed compensatory groundspeed-controlling responses. The increases in height might be alarm responses to sudden movements in the visual field beneath them. Both speed and height changing responses to floor movement were reduced when the number of stationary visual cues was increased. Drosophila thus control their height mainly by responses to the apparent movement of nearby visual cues at round about their own height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号