首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The DNA polymerase and ribonuclease H (RNase H) activities of human immunodeficiency virus type 1 (HIV-1) are needed for the replication of the viral genome and are validated drug targets. However, there are no approved drugs inhibiting RNase H and the efficiency of DNA polymerase inhibitors can be diminished by the presence of drug resistance mutations. In this context, drugs inhibiting both activities could represent a significant advance towards better anti-HIV therapies. We report on the mechanisms of allosteric inhibition of a newly synthesized isatin-based compound designated as RMNC6 that showed IC50 values of 1.4 and 9.8 μM on HIV-1 RT-associated RNase H and polymerase activities, respectively. Blind docking studies predict that RMNC6 could bind two different pockets in the RT: one in the DNA polymerase domain (partially overlapping the non-nucleoside RT inhibitor [NNRTI] binding pocket), and a second one close to the RNase H active site. Enzymatic studies showed that RMNC6 interferes with efavirenz (an approved NNRTI) in its binding to the RT polymerase domain, although NNRTI resistance-associated mutations such as K103N, Y181C and Y188L had a minor impact on RT susceptibility to RMNC6. In addition, despite being naturally resistant to NNRTIs, the polymerase activity of HIV-1 group O RT was efficiently inhibited by RMNC6. The compound was also an inhibitor of the RNase H activity of wild-type HIV-1 group O RT, although we observed a 6.5-fold increase in the IC50 in comparison with the prototypic HIV-1 group M subtype B enzyme. Mutagenesis studies showed that RT RNase H domain residues Asn474 and Tyr501, and in a lesser extent Ala502 and Ala508, are critical for RMNC6 inhibition of the endonuclease activity of the RT, without affecting its DNA polymerization activity. Our results show that RMNC6 acts as a dual inhibitor with allosteric sites in the DNA polymerase and the RNase H domains of HIV-1 RT.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The ribonucleases H (RNases H) of HIV and hepatitis B virus are type 1 RNases H that are promising drug targets because inhibiting their activity blocks viral replication. Eukaryotic ribonuclease H1 (RNase H1) is an essential protein and a probable off-target enzyme for viral RNase H inhibitors. α-hydroxytropolones (αHTs) are a class of anti-RNase H inhibitors that can inhibit the HIV, hepatitis B virus, and human RNases H1; however, it is unclear how these inhibitors could be developed to distinguish between these enzymes. To accelerate the development of selective RNase H inhibitors, we performed biochemical and kinetic studies on the human enzyme, which was recombinantly expressed in Escherichia coli. Size-exclusion chromatography showed that free RNase H1 is monomeric and forms a 2:1 complex with a substrate of 12 bp. FRET heteroduplex cleavage assays were used to test inhibition of RNase H1 in steady-state kinetics by two structurally diverse αHTs, 110 and 404. We determined that turnover rate was reduced, but inhibition was not competitive with substrate, despite inhibitor binding to the active site. Given the compounds’ reversible binding to the active site, we concluded that traditional noncompetitive and mixed inhibition mechanisms are unlikely. Instead, we propose a model in which, by binding to the active site, αHTs stabilize an inactive enzyme–substrate–inhibitor complex. This new model clarifies the mechanism of action of αHTs against RNase H1 and will aid the development of RNase H inhibitors selective for the viral enzymes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号