首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Non-small-cell lung cancer (NSCLC) is one of the main causes of death induced by cancer globally. However, the molecular aberrations in NSCLC patients remain unclearly. In the present study, four messenger RNA microarray datasets (GSE18842, GSE40275, GSE43458, and GSE102287) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between NSCLC tissues and adjacent lung tissues were obtained from GEO2R and the overlapping DEGs were identified. Moreover, functional and pathway enrichment were performed by Funrich, while the protein–protein interaction (PPI) network construction were obtained from STRING and hub genes were visualized and identified by Cytoscape software. Furthermore, validation, overall survival (OS) and tumor staging analysis of selected hub genes were performed by GEPIA. A total of 367 DEGs (95 upregulated and 272 downregulated) were obtained through gene integration analysis. The PPI network consisted of 94 nodes and 1036 edges in the upregulated DEGs and 272 nodes and 464 edges in the downregulated DEGs, respectively. The PPI network identified 46 upregulated and 27 downregulated hub genes among the DEGs, and six (such as CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M) of that have not been identified to be associated with NSCLC so far. Moreover, the expression differences of the mentioned hub genes were consistent with that in lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. Further analysis showed that all the six hub genes were associated with tumor staging except MYH11, while only the upregulated DEG CENPE was associated with the worse OS of patients with NSCLC. In conclusion, the current study showed that CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M might be the key genes contributed to tumorigenesis or tumor progression in NSCLC, further functional study is needed to explore the involved mechanisms.  相似文献   

5.
The effect of overproducing each of the three small heat shock proteins (Hsp; Hsp 18.5, Hsp 18.55, and Hsp 19.3) was investigated in Lactobacillus plantarum strain WCFS1. Overproduction of the three genes, hsp 18.5, hsp 18.55, and hsp 19.3, translationally fused to the start codon of the ldhL gene yielded a protein of approximately 19 kDa, as estimated from Tricine sodium dodecyl sulfate–polyacrylamide gel electrophoresis in agreement with the predicted molecular weight of small Hsps. Small Hsp overproduction alleviated the reduction in growth rate triggered by exposing exponentially growing cells to heat shock (37 or 40°C) and cold shock (12°C). Moreover, overproduction of Hsp 18.55 and Hsp 19.3 led to an enhanced survival in the presence of butanol (1% v/v) or ethanol (12% v/v) treatment suggesting a potential role of L. plantarum small Hsps in solvent tolerance.  相似文献   

6.
7.
Agrobacterium-mediated transformation has been widely used in plants. However, the mechanism in plant cells’ response to Agrobacterium infection was very complex. The mechanism of the determinants in host cell remains obscure, especially in barley, which is recalcitrant for Agrobacterium-mediated transformation. In the present study, microspore-derived embryogenic calli (MDEC) from barley elite cultivar were employed as unique subjects to characterize the mechanisms during the Agrobacterium infection process. Hua 30 MDEC can be successfully infected by Agrobacterium. RNA-sequencing at different infection points (0, 2, 6, 12, 24 hpi) was performed. The average expressional intensity of the whole genomics increased from 0 to 2 hpi, and then decreased subsequently. More upregulated than downregulated differentially expressed genes (DEGs) were counted at the same time. GO enrichment analysis showed that protein modification was significantly overrepresented in upregulated DEGs. Chromosome-related biological processes, gene expression and cellular metabolic processes were significantly overrepresented in downregulated DEGs. KEGG analysis showed that plant defense responses, phenylpropanoid biosynthesis and biosynthesis of amino acids were significantly enriched across the infection time course. Nine DEGs related to defense responses were identified. All DEGs were upregulated from 2 to 24 hpi. We speculate that these genes are possibly related to Agrobacterium infection. These findings will provide deep insights into the molecular events occurring during the process of Agrobacterium-mediated transformation.  相似文献   

8.
9.
10.
Drip loss, one of the most important meat quality traits, is characterized by low heritability. To date, the genetic factors affecting the drip loss trait have not been clearly elucidated. The objective of this study was to identify critical candidate genes affecting drip loss. First, we generated a Pietrain × Duroc × Landrace × Yorkshire commercial pig population and obtained phenotypic values for the drip loss trait. Furthermore, we constructed two RNA libraries from pooled samples of longissimus dorsi muscles with the highest (H group) and lowest (L group) drip loss and identified the differentially expressed genes (DEGs) between these extreme phenotypes using RNA‐seq technology. In total, 25 883 genes were detected in the H and L group libraries, and none was specifically expressed in only one library. Comparative analysis of gene expression levels found that 150 genes were differentially expressed, of which 127 were upregulated and 23 were downregulated in the H group relative to the L group. In addition, 68 drip loss quantitative trait loci (QTL) overlapping with 63 DEGs were identified, and these QTL were distributed mainly on chromosomes 1, 2, 5 and 6. Interestingly, the triadin (TRDN) gene, which is involved in muscle contraction and fat deposition, and the myostatin (MSTN) gene, which has a role in muscle growth, were localized to more than two drip loss QTL, suggesting that both are critical candidate genes responsible for drip loss.  相似文献   

11.
12.
13.

Background  

Escherichia coli induces heat shock genes to the temperature up-shift, and changes the metabolism by complicated mechanism. The heat shock response is of practical importance for the variety of applications such as temperature-induced heterologous protein production, simultaneous saccharification and fermentation (SSF) etc. However, the effect of heat shock on the metabolic regulation is not well investigated. It is strongly desired to understand the metabolic changes and its mechanism upon heat shock in practice for the efficient metabolite production by temperature up-shift. In the present research, therefore, we investigated the effect of temperature up-shift from 37°C to 42°C on the metabolism in view of gene expressions.  相似文献   

14.
X. Ma  P. Li  Q. Zhang  L. He  G. Su  Y. Huang  Z. Lu  W. Hu  H. Ding  R. Huang 《Animal genetics》2019,50(4):326-333
Embryonic survival rate, an important factor in the fecundity of sows, is affected by endometrium‐secreting histotroph. A higher concentration of calcium ion has been observed in the uterus of highly prolific Erhualian sows (EH) compared with those of less prolific (EL) sows. This suggests that EH sows have better establishment and maintenance of pregnancies, thus increasing embryonic survival rate during the peri‐implantation period. To understand the mechanisms of how the endometrium‐secreting histotroph affects embryonic survival rate during the Erhualian peri‐implantation period, the expression patterns of endometrial mRNA in the EH and EL sows on day 12 of gestation were analyzed using RNA sequencing technology. A total of 164 differentially expressed genes (DEGs) were identified (Padj < 0.05, |log2(FC)| ≥ 1), including 46 upregulated and 118 downregulated genes in EH compared to EL. Gene Ontology enrichment indicated that a subset of DEGs was involved in calcium ion binding and cell adhesion. Solute carrier family 8 member A3 and solute carrier family 24 member 4, identified as upregulated genes (Padj < 0.05) in EH, were considered key candidate genes expressed in the endometrium affecting embryonic survival rate during the peri‐implantation period. The results improve understanding of the genetic mechanism underlying the variation in litter size of Erhualian pigs during the peri‐implantation period.  相似文献   

15.
16.
17.
The effects of a mild heat shock were investigated using cultured 15-day-old fetal rat hepatocytes in which an acute glucocorticoid-dependent glycogenic response to insulin was present. After exposure from 15 min to 2 h at 42.5°C, cell surface [125I]insulin binding progressively decreased down to 60% of the value shown in cells kept at 37°C, due to a decrease in the apparent number of insulin binding sites with little change in insulin receptor affinity. In parallel cultures, protein labeling with [35S]methionine exhibited stimulated synthesis of specific proteins, in particular, 73-kDa Hsc (heat shock cognate) and 72-kDa Hsp (heat shock protein). When cells were returned to 37°C after 2 h at 42.5°C, cell surface insulin binding showed a two-third restoration within 3 h (insulin receptor half-life = 13 h), with similar concomitant return of Hsps72,73 synthesis to preinduction levels. The rate of [14C]glucose incorporation into glycogen measured at 37°C after 1- to 2-h heat treatment revealed a striking yet transient increase in basal glycogenesis (up to 5-fold). At the same time, the glycogenesis stimulation by insulin was reduced (from 3.2 to 1.4—fold), whereas that induced by a glucose load was maintained. Induction of thermotolerance after a first heating was obtained for the heat shock-dependent events except for the enhanced basal glycogenesis. In insulin-unresponsive cells grown in the absence of glucocorticoids, heat shock decreased the glycogenic capacity without modifying the glucose load stimulation, supporting the hypothesis that insulin and thermal stimulation of glycogenesis share at least part of the same pathway. Inverse variations were observed between Hsps72,73 synthesis and both cell surface insulin receptor level and insulin glycogenic response in fetal hepatocytes experiencing heat stress. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Heat shock proteins play an important role as molecular chaperones of the cell. Inducible heat shock protein 70 is rapidly synthesised in response to numerous stressors and monocytes are sensitive to changes in core temperature resulting in a circadian variation of Hsp70 expression. Monocytes were isolated via density centrifugation from nine healthy male volunteers at 5 am, 1 pm and 9 pm, representing the nadir (5 am), peak (9 pm) and intermediate (1 pm) of Hsp70 expression in the 24-h cycle. Analysis of freshly isolated monocytes for Hsp70 expression confirmed Hsp70 levels at the three selected time points. Monocytes were subjected to in vitro heat shock at 40°C (±0.1) for 90 min with a 90 min 37°C (±0.1) exposure acting as a control. A significant increase in Hsp70 was observed at 5 am (p < 0.001) and 1 pm (p = 0.028) at 40°C when compared to 37°C but not at 9 pm (p = 0.19). A significant increase was also observed from the basal levels of Hsp70, measured on freshly isolated monocytes and the levels detected after heat shock at 40°C at 5 am (p < 0.001) and 1 pm (p = 0.001), which was not observed at 9 pm (p = 0.15). Furthermore, a significant correlation was observed in the heat shock response at 40°C and that obtained at 37°C (p < 0.001). In conclusion, the heat shock response in monocytes is directly proportional to the amount of Hsp70 present in the cells and the stress response may be much higher at different times of the day.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号