首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.  相似文献   

2.
3.
4.
The cyanobacterium Microcystis mainly exists in colonies under natural conditions but as single cells in typical laboratory cultures. Understanding the mechanism by which single cells form small and large colonies can provide a deeper insight into the life history of Microcystis and the mechanisms of Microcystis bloom formation. In this paper, Microcystis aeruginosa cultured under varying light intensities and temperatures exhibited different specific growth rates. Correlations were found between the specific growth rate, extracellular polysaccharide (EPS) content, and morphology of M. aeruginosa. Under low light intensities and temperatures, M. aeruginosa formed small colonies (maximum colony size approximately 100 μm) and exhibited low specific growth rates. By contrast, standard culture conditions yielded single or paired cells with high specific growth rates. Moreover, the EPS content decreased dramatically with increasing specific growth rate. A significant positive linear relationship was observed between the EPS content per cell and colony size. High EPS content and colony formation were associated with low specific growth rates. The specific growth rate in laboratory cultures was higher than the in situ growth rate under natural conditions. This result may explain why Microcystis normally exists as single cells or (more rarely) as paired cells in axenic laboratory cultures after long-term cultivation, but forms colonies under natural conditions.  相似文献   

5.
Salmonella enterica has the ability to form biofilms and large aggregates on produce surfaces, including on cilantro leaves. Aggregates of S. enterica serovar Thompson that remained attached to cilantro leaves after rigorous washing and that were present free or bound to dislodged leaf tissue in the wash suspension were observed by confocal microscopy. Measurement of S. Thompson population sizes in the leaf washes by plate counts failed to show an effect of 0.05% Tween 80 on the removal of the pathogen from cilantro leaves 2 and 6 days after inoculation. On the contrary, digital image analysis of micrographs of single cells and aggregates of green fluorescent protein (GFP)-S. Thompson present in cilantro leaf washes revealed that single cells represented 13.7% of the cell assemblages in leaf washes containing Tween 80, versus 9.3% in those without the surfactant. Moreover, Tween 80 decreased the percentage of the total S. Thompson cell population located in aggregates equal to or larger than 64 cells from 9.8% to 4.4% (P < 0.05). Regression analysis of the frequency distribution of aggregate size in leaf washes with and without Tween 80 showed that the surfactant promoted the dispersal of cells from large aggregates into smaller ones and into single cells (P < 0.05). Our study underlines the importance of investigating bacterial behavior at the scale of single cells in order to uncover trends undetectable at the population level by bacterial plate counts. Such an approach may provide valuable information to devise strategies aimed at enhancing the efficacy of produce sanitization treatments.  相似文献   

6.
We tested for chemical reagents that would be useful in preparing a large number of vital single cells from colonial Botryococcus braunii B-race, variety Showa. Among the 18 reagents assayed, glycerol and erythritol showed the highest potency for releasing single cells. Incubation in medium containing these reagents released 40–50 % single cells in 15 min. Fluorescent staining with Nile red revealed that except for the cap-like structures the released single cells were free of hydrocarbon oils that accumulated in the extracellular matrix where the single cells were embedded. However, to maintain the prepared single cells in vital condition, they must be maintained at a high concentration (>2?×?107 cells/ml); at low concentrations, they rapidly lost chlorophyll and get disrupted. In contrast to the above results obtained using B-race, Showa, single cells prepared from A-race varieties survived even at low cell concentrations.  相似文献   

7.
Three microscopic in situ techniques were used simultaneously to investigate viability and activity on a single-cell level in activated sludge. The redox dye 5-cyano-2,3-tolyl-tetrazolium chloride (CTC) was compared with microautoradiography (MAR) and fluorescence in situ hybridization (FISH) to indicate activity of cells in Thiothrix filaments and in single floc-forming bacteria. The signals from MAR and FISH correlated well, whereas only 65% of the active Thiothrix cells and 41% of all single cells were detectable by CTC reduction, which mainly targeted the most active cells.  相似文献   

8.
Recent evidence suggests that cell-to-cell difference at the gene expression level is an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression heterogeneity determines the fate of individual bacterial cells in populations and could also affect the ultimate fate of populations themselves. To quantify the heterogeneity and its biological significance, quantitative methods to measure gene expression in single bacterial cells are needed. In this work, we developed two SYBR Green-based RT-qPCR methods to determine gene expression directly in single bacterial cells. The first method involves a single-tube operation that can analyze one gene from each bacterial cell. The second method is featured by a two-stage protocol that consists of RNA isolation from a single bacterial cell and cDNA synthesis in the first stage, and qPCR in the second stage, which allows determination of expression level of multiple genes simultaneously for single bacterial cells of both gram-positive and negative. We applied the methods to stress-treated (i.e. low pH and high temperature) Escherichia coli populations. The reproducible results demonstrated that the method is sensitive enough not only for measuring cellular responses at the single-cell level, but also for revealing gene expression heterogeneity among the bacterial cells. Furthermore, our results showed that the two-stage method can reproducibly measure multiple highly expressed genes from a single E. coli cell, which exhibits important foundation for future development of a high throughput and lab-on-chips whole-genome RT-qPCR methodology for single bacterial cells.  相似文献   

9.
10.
Except for Mycoplasma fermentans strain PG 18, single-cell suspensions of M. arthritidis, M. fermentans (ATCC 19989), M. hominis type 1, M. orale types 1 and 2, M. pneumoniae, and M. salivarium were inactivated exponentially by ultraviolet (UV) irradiation, in contrast to broth cultures containing clusters of elementary bodies. The susceptibility of the mycoplasmas was unaffected by storage at 2-4 C and at -70 C, by sonication, and by filtration. The rate of inactivation was dependent on the intensity of the radiations but independent of the concentration of the cells. Therefore, single-cell suspensions of these mycoplasmas could be differentiated from aggregates of cells by exponential inactivation of the colony-forming units (CFU). By this criterion, the CFU of M. arthritidis in the exponential phase of growth consisted of single cells, in contrast to the other species in which the CFU contained two or more elementary bodies. Even though the cultures of M. fermentans (PG 18) were grown from single cells, they were not homogeneous in their susceptibility to UV light. Neither were cultures of M. arthritidis and M. orale type 1 grown from single cells which had survived irradiation.  相似文献   

11.
12.
Spleen cells from mice immunized with SRBC were subjected to controlled rate freezing to ?100 °C. Complete recovery of PFC was obtained with DMSO used as the cryopreservative. Simple dilution of spleen cells in DMSO, or a single cycle of freezing and thawing in DMSO prior to short-term culture, resulted in early loss of recoverable cells. A single cycle of freezing and thawing inhibited the in vitro immune response to SRBC while having little effect on the response to TNP-T4. The in vitro blastogenic responses to LPS and PHA-P were severely reduced in cultures of frozen and thawed cells.  相似文献   

13.
In human somatic tumorigenesis, mutations are thought to arise sporadically in individual cells surrounded by unaffected cells. This contrasts with most current transgenic models where mutations are induced synchronously in entire cell populations. Here we have modeled sporadic oncogene activation using a transgenic mouse in which c-MYC is focally activated in prostate luminal epithelial cells. Focal c-MYC expression resulted in mild pathology, but prostate-specific deletion of a single allele of the Pten tumor suppressor gene cooperated with c-MYC to induce high grade prostatic intraepithelial neoplasia (HGPIN)/cancer lesions. These lesions were in all cases associated with loss of Pten protein expression from the wild type allele. In the prostates of mice with concurrent homozygous deletion of Pten and focal c-MYC activation, double mutant (i.e. c-MYC+;Pten-null) cells were of higher grade and proliferated faster than single mutant (Pten-null) cells within the same glands. Consequently, double mutant cells outcompeted single mutant cells despite the presence of increased rates of apoptosis in the former. The p53 pathway was activated in Pten-deficient prostate cells and tissues, but c-MYC expression shifted the p53 response from senescence to apoptosis by repressing the p53 target gene p21Cip1. We conclude that c-MYC overexpression and Pten deficiency cooperate to promote prostate tumorigenesis, but a p53-dependent apoptotic response may present a barrier to further progression. Our results highlight the utility of inducing mutations focally to model the competitive interactions between cell populations with distinct genetic alterations during tumorigenesis.  相似文献   

14.
Label-free, non-invasive, rapid absorbance spectral imaging A(x,y,λ) microscopy of single live cells at 1.2 μm × 1.2 μm resolution with an NA = 0.85 objective was developed and applied to unicellular green algae Chlamydomonas reinhardtii. By introducing the fiber assembly to rearrange a two-dimensional image to the one-dimensional array to fit the slit of an imaging spectrograph equipped with a CCD detector, scan-free acquisition of three-dimensional information of A(x,y,λ) was realized. The space-resolved absorbance spectra of the eyespot, an orange organelle about 1 μm, were extracted from the green-color background in a chlorophyll-rich single live cell absorbance image. Characteristic absorbance change in the cell suspension after hydrogen photoproduction in C. reinhardtii was investigated to find a single 715-nm absorption peak was locally distributed within single cells. The formula to calculate the absorbance of cell suspensions from that of single cells was presented to obtain a quantitative, parameter-free agreement with the experiment. It is quantitatively shown that the average number of chlorophylls per cell is significantly underestimated when it is evaluated from the absorbance of the cell suspensions due to the package effect.  相似文献   

15.
The study of tumourigenesis commonly involves the use of established cell lines or single cell suspensions of primary tumours. Standard methods for the generation of short-term tumour cell cultures include the disintegration of tissue based on enzymatic and mechanical stress. Here, we describe a simple and rapid method for the preparation of single cells from primary carcinomas, which is independent of enzymatic treatment and feeder cells. Tumour biopsies are processed to 1 mm3 cubes termed explants, which are cultured 1–3 days on agarose-coated well plates in specified medium. Through incisions generated in the explants, single cells are retrieved and collected from the culture supernatant and can be used for further analysis including in vitro and in vivo studies. Collected cells retain tumour-forming capacity in xenotransplantation assays, mimic the phenotype of the primary tumour, and facilitate the generation of cell lines.  相似文献   

16.
17.
18.
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees.  相似文献   

19.
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号