首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice.  相似文献   

2.
Phosphoinositide 3-kinases (PI3K) are key molecular players in male fertility. However, the specific roles of different p110 PI3K catalytic subunits within the spermatogenic lineage have not been characterized so far. Herein, we report that male mice expressing a catalytically inactive p110β develop testicular hypotrophy and impaired spermatogenesis, leading to a phenotype of oligo-azoospermia and defective fertility. The examination of testes from p110β-defective tubules demonstrates a widespread loss in spermatogenic cells, due to defective proliferation and survival of pre- and postmeiotic cells. In particular, p110β is crucially needed in c-Kit–mediated spermatogonial expansion, as c-Kit–positive cells are lost in the adult testis and activation of Akt by SCF is blocked by a p110β inhibitor. These data establish that activation of the p110β PI3K isoform by c-Kit is required during spermatogenesis, thus opening the way to new treatments for c-Kit positive testicular cancers.  相似文献   

3.
In addition to lipid kinase activity, the class-I PI 3-kinases also function as protein kinases targeting regulatory autophosphorylation sites and exogenous substrates. The latter include a recently identified regulatory phosphorylation of the GM-CSF/IL-3 βc receptor contributing to survival of acute myeloid leukaemia cells. Previous studies suggested differences in the protein kinase activity of the 4 isoforms of class-I PI 3-kinase so we compared the ability of all class-I PI 3-kinases and 2 common oncogenic mutants to autophosphorylate, and to phosphorylate an intracellular fragment of the GM-CSF/IL-3 βc receptor (βic). We find p110α, p110β and p110γ all phosphorylate βic but p110δ is much less effective. The two most common oncogenic mutants of p110α, H1047R and E545K have stronger protein kinase activity than wildtype p110α, both in terms of autophosphorylation and towards βic. Importantly, the lipid kinase activity of the oncogenic mutants is still inhibited by autophosphorylation to a similar extent as wildtype p110α. Previous evidence indicates the protein kinase activity of p110α is Mn2+ dependent, casting doubt over its role in vivo. However, we show that the oncogenic mutants of p110α plus p110β and p110γ all display significant activity in the presence of Mg2+. Furthermore we demonstrate that some small molecule inhibitors of p110α lipid kinase activity (PIK-75 and A66) are equally effective against the protein kinase activity, but other inhibitors (e.g. wortmannin and TGX221) show different patterns of inhibition against the lipid and protein kinases activities. These findings have implications for the function of PI 3-kinase, especially in tumours carrying p110α mutations.  相似文献   

4.
Male gyro (Gy) mice, which have an X chromosomal deletion inactivating the SpmS and Phex genes, were found to be profoundly hearing impaired. This defect was due to alteration in polyamine content due to the absence of spermine synthase, the product of the SpmS gene. It was reversed by breeding the Gy strain with CAG/SpmS mice, a transgenic line that ubiquitously expresses spermine synthase under the control of a composite cytomegalovirus-IE enhancer/chicken β-actin promoter. There was an almost complete loss of the endocochlear potential in the Gy mice, which parallels the hearing deficiency, and this was also reversed by the production of spermine from the spermine synthase transgene. Gy mice showed a striking toxic response to treatment with the ornithine decarboxylase inhibitor α-difluoromethylornithine (DFMO). Within 2–3 days of exposure to DFMO in the drinking water, the Gy mice suffered a catastrophic loss of motor function resulting in death within 5 days. This effect was due to an inability to maintain normal balance and was also prevented by the transgenic expression of spermine synthase. DFMO treatment of control mice or Gy-CAG/SpmS had no effect on balance. The loss of balance in Gy mice treated with DFMO was due to inhibition of polyamine synthesis because it was prevented by administration of putrescine. Our results are consistent with a critical role for polyamines in regulation of Kir channels that maintain the endocochlear potential and emphasize the importance of normal spermidine:spermine ratio in the hearing and balance functions of the inner ear.Polyamines are essential for viability in mammals. Knockouts of the genes for ornithine decarboxylase and S-adenosylmethionine decarboxylase, which are enzymes needed for the synthesis of putrescine, spermidine, and spermine, are lethal at early stages of embryonic development (1, 2). There is convincing evidence that the formation of hypusine in eIF5A, which requires spermidine as a precursor, is essential for eukaryotes (3). However, the function(s) of spermine is not so well established. Yeast mutants with inactivated spermine synthase grow at a normal rate (4). Mammalian cells in culture also grow normally in the presence of inhibitors of spermine synthase (5) or after inactivation of the spermine synthase gene (SpmS) (68). Inactivation of both of the genes that were originally described as encoding spermine synthases in plants leads to profound developmental defects (911), but recently it was discovered that one of these genes actually encodes a thermospermine synthase, and it appears that the lack of thermospermine may be responsible for these defects (12).In contrast, spermine is clearly required for normal development in mammals. The rare human Snyder-Robinson syndrome is caused by mutations in SpmS located in the X chromosome that drastically reduces the amount of spermine synthase (13, 14). This leads to mental retardation, hypotonia, cerebellar circuitry dysfunction, facial asymmetry, thin habitus, osteoporosis, and kyphoscoliosis. Male mice, which have an X chromosomal deletion that includes SpmS and have no detectable spermine synthase activity, do survive but are only viable on the B6C3H background (1517). This mouse strain having an X-linked dominant mutation was isolated from a female offspring of an irradiated mouse and was termed gyro (Gy)2 based on a circling behavior pattern in affected males (18). Subsequent studies have shown that the Gy mice have a deletion of part of the X chromosome that inactivates both Phex, a gene that regulates phosphate metabolism, and SpmS (16, 19). The lack of SpmS causes a total absence of spermine (6, 7, 15, 16). Such Gy mice suffer from hypophosphatemia, have a greatly reduced size, sterility, and neurological abnormalities, and have a short life span (6, 16, 18). All of these changes except the hypophosphatemia are reversed when spermine synthase activity is restored (20).The original characterization of Gy mice also reported preliminary indications that these mice had hearing defects lacking the Preyer reflex (21, 22). This is of particular interest in the context of polyamine metabolism because a drug, α-difluoromethylornithine (DFMO, Eflornithine), that targets ornithine decarboxylase has been shown to cause occasional hearing loss in some patients (2326). Although DFMO was ineffective for cancer treatment, it is an extremely promising agent for cancer chemoprevention (27, 28). When combined with sulindac, DFMO treatment produced a substantial reduction in the recurrence of colorectal adenomas in a large clinical trial (27). DFMO is a major drug for the treatment of African sleeping sickness caused by Trypanosoma brucei (29, 30). It is also used as a topically applied cream for treatment of unwanted facial hair in women (31, 32). DFMO is generally well tolerated even at high doses, but reversible hearing loss has been reported in multiple clinical trials (25, 33), and a rarer irreversible defect has also been reported (34). These side effects are not observed at lower doses of DFMO (26, 27).Ototoxicity has been demonstrated to occur in experimental animals treated with DFMO including rats (35), guinea pigs (36), gerbils (37), and mice (38). Using immunohistochemistry, a high level of ornithine decarboxylase was observed in the inner ear of the rat, with the highest in the organ of Corti and lateral wall followed by the cochlear nerve (39). Measurements of polyamines in the relevant structures are very difficult due to the small amount of tissue available, but as expected, DFMO treatment reduced polyamine levels and ornithine decarboxylase activity in the inner ear of the guinea pig (36). A plausible explanation for the importance of polyamines in auditory physiology is based on their well documented role as regulators of potassium channels (38). The inward rectification of Kir channels is caused by blockage of the outward current by polyamines (4042). Studies of the cloned mouse cochlear lateral wall-specific Kir4.1 channel showed that inward rectification was reduced and that there was a marked reduction in endocochlear potential (EP). It was proposed that DFMO treatment increases the outward Kir4.1 current, resulting in a drop in EP (38).In the experiments reported here, we have studied in more detail the role of polyamines in auditory physiology using Gy mice and crosses of these mice with transgenic CAG/SpmS mice (43). These mice express spermine synthase under the control of a composite cytomegalovirus-IE enhancer/chicken β-actin promoter, which was designed to provide ubiquitous expression (4446). Assays of the spermine synthase activity in CAG/SpmS line 8 confirmed that there was a high level of expression of the transgene in many different organs and that this level was maintained for at least 1 year (43). Our studies confirm that Gy mice are totally deaf and that this condition is reversed by the expression of the SpmS gene. These changes are due to a virtually complete loss of the EP in the Gy mice. We have also examined the effect of DFMO on the Gy mice. Unexpectedly, it was found that these mice show a rapid and profound toxicity to this drug, leading to death within a few days. Within 5 days of exposure to DFMO in the drinking water, the DFMO-treated mice suffered a catastrophic loss of balance due to inner ear effects. This toxicity was also prevented by the transgenic expression of spermine synthase in the Gy background.  相似文献   

5.
Studies were conducted to identify a 64-kD thylakoid membrane protein of unknown function. The protein was extracted from chloroplast thylakoids under low ionic strength conditions and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four peptides generated from the proteolytic cleavage of the wheat 64-kD protein were sequenced and found to be identical to internal sequences of the chloroplast-coupling factor (CF1) α-subunit. Antibodies for the 64-kD protein also recognized the α-subunit of CF1. Both the 64-kD protein and the 61-kD CF1 α-subunit were present in the monocots barley (Hordeum vulgare), maize (Zea mays), oat (Avena sativa), and wheat (Triticum aestivum); but the dicots pea (Pisum sativum), soybean (Glycine max Merr.), and spinach (Spinacia oleracea) contained only a single polypeptide corresponding to the CF1 α-subunit. The 64-kD protein accumulated in response to high irradiance (1000 μmol photons m−2 s−1) and declined in response to low irradiance (80 μmol photons m−2 s−1) treatments. Thus, the 64-kD protein was identified as an irradiance-dependent isoform of the CF1 α-subunit found only in monocots. Analysis of purified CF1 complexes showed that the 64-kD protein represented up to 15% of the total CF1 α-subunit.  相似文献   

6.
7.
Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110β and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.  相似文献   

8.
Phosphoinositide (PI) 3-kinase (PI3K) signaling processes play an important role in regulating the adhesive function of integrin αIIbβ3, necessary for platelet spreading and sustained platelet aggregation. PI3K inhibitors are effective at reducing platelet aggregation and thrombus formation in vivo and as a consequence are currently being evaluated as novel antithrombotic agents. PI3K regulation of integrin αIIbβ3 activation (affinity modulation) primarily occurs downstream of Gi-coupled and tyrosine kinase-linked receptors linked to the activation of Rap1b, AKT, and phospholipase C. In the present study, we demonstrate an important role for PI3Ks in regulating the avidity (strength of adhesion) of high affinity integrin αIIbβ3 bonds, necessary for the cellular transmission of contractile forces. Using knock-out mouse models and isoform-selective PI3K inhibitors, we demonstrate that the Type Ia p110β isoform plays a major role in regulating thrombin-stimulated fibrin clot retraction in vitro. Reduced clot retraction induced by PI3K inhibitors was not associated with defects in integrin αIIbβ3 activation, actin polymerization, or actomyosin contractility but was associated with a defect in integrin αIIbβ3 association with the contractile cytoskeleton. Analysis of integrin αIIbβ3 adhesion contacts using total internal reflection fluorescence microscopy revealed an important role for PI3Ks in regulating the stability of high affinity integrin αIIbβ3 bonds. These studies demonstrate an important role for PI3K p110β in regulating the avidity of high affinity integrin αIIbβ3 receptors, necessary for the cellular transmission of contractile forces. These findings may provide new insight into the potential antithrombotic properties of PI3K p110β inhibitors.  相似文献   

9.
Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.  相似文献   

10.
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins.  相似文献   

11.
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/-) cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/-) cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/-) cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/-) cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.  相似文献   

12.
13.
14.
We have determined the chromosomal localization of the gene for the regulatory subunit RIIα of cAMP-dependent protein kinase (locus PRKAR2A) to human chromosome 3 using polymerase chain reaction (PCR) and Southern blot analysis of two different somatic cell hybrid mapping panels. Furthermore, PCR analysis of a chromosome 3 mapping panel revealed the presence of a human RIIα-specific amplification product only in cell lines containing the region 3p21.3–p21.2. The localization of PRKAR2A was confirmed by PCR mapping using the Stanford G3 Radiation Hybrid Panel as template. The results from this analysis demonstrated that PRKAR2A is most closely linked to D3S3334 (lod score 12.5) and flanked by D3S1322E and D3S1581.  相似文献   

15.
The immunoproteasome subunit β5i has been shown to play an important role in Th1/Th17 driven models of colitis and arthritis. However, the function of β5i in Th2 dependent diseases remains enigmatic. To study the role of β5i in Th2-driven pathology, β5i knockout (KO) and control mice were tested in different models of experimental allergic asthma. β5i-deficient mice showed reduced OVA/Alum- and subcutaneous/OVA-induced acute asthma with decreased eosinophilia in the bronchoalveolar lavage (BAL), low OVA-specific IgG1 and reduced local and systemic Th2 cytokines. While Th2 cells in the lungs were reduced, Tregs and Th1 cells were not affected. Attenuated asthma in β5i KO mice could not be attributed to defects in OVA uptake or maturation of dendritic cells in the lung. Surprisingly, β5i deficient mice developed HDM asthma which was comparable to control mice. Here, we present novel evidence for the requirement of the β5i immunosubunit to generate a strong Th2 response during OVA- but not HDM-induced acute asthma. The unexpected role of β5i in OVA asthma remains to be clarified.  相似文献   

16.
The novel α1D L-type Ca2+ channel is expressed in supraventricular tissue and has been implicated in the pacemaker activity of the heart and in atrial fibrillation. We recently demonstrated that PKA activation led to increased α1D Ca2+ channel activity in tsA201 cells by phosphorylation of the channel protein. Here we sought to identify the phosphorylated PKA consensus sites on the α1 subunit of the α1D Ca2+ channel by generating GST fusion proteins of the intracellular loops, N terminus, proximal and distal C termini of the α1 subunit of α1D Ca2+ channel. An in vitro PKA kinase assay was performed for the GST fusion proteins, and their phosphorylation was assessed by Western blotting using either anti-PKA substrate or anti-phosphoserine antibodies. Western blotting showed that the N terminus and C terminus were phosphorylated. Serines 1743 and 1816, two PKA consensus sites, were phosphorylated by PKA and identified by mass spectrometry. Site directed mutagenesis and patch clamp studies revealed that serines 1743 and 1816 were major functional PKA consensus sites. Altogether, biochemical and functional data revealed that serines 1743 and 1816 are major functional PKA consensus sites on the α1 subunit of α1D Ca2+ channel. These novel findings provide new insights into the autonomic regulation of the α1D Ca2+ channel in the heart.L-type Ca2+ channels are essential for the generation of normal cardiac rhythm, for induction of rhythm propagation through the atrioventricular node and for the contraction of the atrial and ventricular muscles (15). L-type Ca2+ channel is a multisubunit complex including α1, β and α2/δ subunits (57). The α1 subunit contains the voltage sensor, the selectivity filter, the ion conduction pore, and the binding sites for all known Ca2+ channel blockers (69). While α1C Ca2+ channel is expressed in the atria and ventricles of the heart (1013), expression of α1D Ca2+ channel is restricted to the sinoatrial (SA)2 and atrioventricular (AV) nodes, as well as in the atria, but not in the adult ventricles (2, 3, 10).Only recently it has been realized that α1D along with α1C Ca2+ channels contribute to L-type Ca2+ current (ICa-L) and they both play important but unique roles in the physiology/pathophysiology of the heart (69). Compared with α1C, α1D L-type Ca2+ channel activates at a more negative voltage range and shows slower current inactivation during depolarization (14, 15). These properties may allow α1D Ca2+ channel to play critical roles in SA and AV nodes function. Indeed, α1D Ca2+ channel knock-out mice exhibit significant SA dysfunction and various degrees of AV block (12, 1619).The modulation of α1C Ca2+ channel by cAMP-dependent PKA phosphorylation has been extensively studied, and the C terminus of α1 was identified as the site of the modulation (2022). Our group was the first to report that 8-bromo-cAMP (8-Br-cAMP), a membrane-permeable cAMP analog, increased α1D Ca2+ channel activity using patch clamp studies (2). However, very little is known about potential PKA phosphorylation consensus motifs on the α1D Ca2+ channel. We therefore hypothesized that the C terminus of the α1 subunit of the α1D Ca2+ channel mediates its modulation by cAMP-dependent PKA pathway.  相似文献   

17.
Chronic rejection is the major cause of long-term heart allograft failure, characterized by tissue infiltration by recipient T cells with indirect allospecificity. Phosphoinositol-3-kinase p110δ is a key mediator of T cell receptor signaling, regulating both T cell activation and migration of primed T cells to non-lymphoid antigen-rich tissue. We investigated the effect of genetic or pharmacologic inactivation of PI3K p110δ on the development of chronic allograft rejection in a murine model in which HY-mismatched male hearts were transplanted into female recipients. We show that suppression of p110δ activity significantly attenuates the development of chronic rejection of heart grafts in the absence of any additional immunosuppressive treatment by impairing the localization of antigen-specific T cells to the grafts, while not inducing specific T cell tolerance. p110δ pharmacologic inactivation is effective when initiated after transplantation. Targeting p110δ activity might be a viable strategy for the treatment of heart chronic rejection in humans.  相似文献   

18.
The PI3K (phosphoinositide 3-kinase) pathway is commonly activated in cancer as a consequence of inactivation of the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K signalling. In line with this important role of PTEN, mice that are heterozygous for a PTEN-null allele (PTEN+/? mice) spontaneously develop a variety of tumours in multiple organs. PTEN is a phosphatase with selectivity for PtdIns(3,4,5)P3, which is produced by the class I isoforms of PI3K (p110α, p110β, p110γ and p110δ). Previous studies indicated that PTEN-deficient cancer cell lines mainly depend on p110β, and that p110β, but not p110α, controls mouse prostate cancer development driven by PTEN loss. In the present study, we investigated whether the ubiquitously expressed p110α can also functionally interact with PTEN in cancer. Using genetic mouse models that mimic systemic administration of p110α- or p110β-selective inhibitors, we confirm that inactivation of p110β, but not p110α, inhibits prostate cancer development in PTEN+/? mice, but also find that p110α inactivation protects from glomerulonephritis, pheochromocytoma and thyroid cancer induced by PTEN loss. This indicates that p110α can modulate the impact of PTEN loss in disease and tumourigenesis. In primary and immortalized mouse fibroblast cell lines, both p110α and p110β controlled steady-state PtdIns(3,4,5)P3 levels and Akt signalling induced by heterozygous PTEN loss. In contrast, no correlation was found in primary mouse tissues between PtdIns(3,4,5)P3 levels, PI3K/PTEN genotype and cancer development. Taken together, our results from the present study show that inactivation of either p110α or p110β can counteract the impact of PTEN inactivation. The potential implications of these findings for PI3K-targeted therapy of cancer are discussed.  相似文献   

19.
Colony stimulating factor-1 (CSF-1) and its receptor (CSF-1R) are key regulators of macrophage biology, and their elevated expression in cancer cells has been linked to poor prognosis. CSF-1Rs are thought to function at the plasma membrane. We show here that functional CSF-1Rs are present at the nuclear envelope of various cell types, including primary macrophages, human cancer cell lines, and primary human carcinomas. In response to CSF-1, added to intact cells or isolated nuclei, nucleus-associated CSF-1R became phosphorylated and triggered the phosphorylation of Akt and p27 inside the nucleus. Extracellularly added CSF-1 was also found to colocalize with nucleus-associated CSF-1Rs. All these activities were found to depend selectively on the activity of the p110δ isoform of phosphoinositide 3-kinase (PI3K). This finding was related to the p110δ-dependent translocation of exogenous CSF-1 to the nucleus-associated CSF-1Rs, correlating with a prominent role of p110δ in activation of the Rab5 GTPase, a key regulator of the endocytic trafficking. siRNA-silencing of Rab5a phenocopied p110δ inactivation and nuclear CSF-1 signaling. Our work demonstrates for the first time the presence of functional nucleus-associated CSF-1Rs, which are activated by extracellular CSF-1 by a mechanism that involves p110δ and Rab5 activity. These findings may have important implications in cancer development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号