首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.  相似文献   

2.
3.
Maintenance and remodeling of endothelial cell junctions critically depend on the VE-cadherin/catenin complex and its interaction with the actin filament cytoskeleton. Here we demonstrate that local lack of vascular endothelial (VE)-cadherin at established cell junctions causes actin-driven and actin-related protein 2/3 complex (ARP2/3)–controlled lamellipodia to appear intermittently at those sites. Lamellipodia overlap the VE-cadherin–free adjacent plasma membranes and facilitate formation of new VE-cadherin adhesion sites, which quickly move into the junctions, driving VE-cadherin dynamics and remodeling. Inhibition of the ARP2/3 complex by expression of the N-WASP (V)CA domain or application of two ARP2/3 inhibitors, CK-548 and CK-666, blocks VE-cadherin dynamics and causes intercellular gaps. Furthermore, expression of carboxy-terminal–truncated VE-cadherin increases the number of ARP2/3-controlled lamellipodia, whereas overexpression of wild-type VE-cadherin largely blocks it and decreases cell motility. The data demonstrate a functional interrelationship between VE-cadherin–mediated cell adhesion and actin-driven, ARP2/3-controlled formation of new VE-cadherin adhesion sites via intermittently appearing lamellipodia at established cell junctions. This coordinated mechanism controls VE-cadherin dynamics and cell motility and maintains monolayer integrity, thus potentially being relevant in disease and angiogenesis.  相似文献   

4.
The vascular endothelium is a cellular interface between the blood and the interstitial space of tissue, which controls the exchange of fluid, solutes and cells by both transcellular and paracellular means. To accomplish the demands on barrier function, the regulation of the endothelium requires quick and adaptive mechanisms. This is, among others, accomplished by actin dynamics that interdependently interact with both the VE-cadherin/catenin complex, the main components of the adherens type junctions in endothelium and the membrane cytoskeleton. Actin filaments in endothelium are components of super-structured protein assemblies that control a variety of dynamic processes such as endo- and exocytosis, shape change, cell–substrate along with cell–cell adhesion and cell motion. In endothelium, actin filaments are components of: (1) contractile actin bundles appearing as stress fibers and junction-associated circumferential actin filaments, (2) actin networks accompanied by endocytotic ruffles, lamellipodia at leading edges of migrating cells and junction-associated intermittent lamellipodia (JAIL) that dynamically maintain junction integrity, (3) cortical actin and (4) the membrane cytoskeleton. All these structures, most probably interact with cell junctions and cell–substrate adhesion sites. Due to the rapid growth in information, we aim to provide a bird’s eye view focusing on actin filaments in endothelium and its functional relevance for entire cell and junction integrity, rather than discussing the detailed molecular mechanism for control of actin dynamics.  相似文献   

5.
Adherens junctions are required for vascular endothelium integrity. These structures are formed by the clustering of the homophilic adhesive protein VE-cadherin, which recruits intracellular partners, such as β- and α-catenins, vinculin, and actin filaments. The dogma according to which α-catenin bridges cadherin·β-catenin complexes to the actin cytoskeleton has been challenged during the past few years, and the link between the VE-cadherin·catenin complex and the actin cytoskeleton remains unclear. Recently, epithelial protein lost in neoplasm (EPLIN) has been proposed as a possible bond between the E-cadherin·catenin complex and actin in epithelial cells. Herein, we show that EPLIN is expressed at similar levels in endothelial and epithelial cells and is located at interendothelial junctions in confluent cells. Co-immunoprecipitation and GST pulldown experiments provided evidence that EPLIN interacts directly with α-catenin and tethers the VE-cadherin·catenin complex to the actin cytoskeleton. In the absence of EPLIN, vinculin was delocalized from the junctions. Furthermore, suppression of actomyosin tension using blebbistatin triggered a similar vinculin delocalization from the junctions. In a Matrigel assay, EPLIN-depleted endothelial cells exhibited a reduced capacity to form pseudocapillary networks because of numerous breakage events. In conclusion, we propose a model in which EPLIN establishes a link between the cadherin·catenin complex and actin that is independent of actomyosin tension. This link acts as a mechanotransmitter, allowing vinculin binding to α-catenin and formation of a secondary molecular bond between the adherens complex and the cytoskeleton through vinculin. In addition, we provide evidence that the EPLIN clutch is necessary for stabilization of capillary structures in an angiogenesis model.  相似文献   

6.
The vascular endothelial cadherin (VE-cad)-based complex is involved in the maintenance of vascular endothelium integrity. Using immunoprecipitation experiments, we have demonstrated that, in confluent human umbilical vein endothelial cells, the VE-cad-based complex interacts with annexin 2 and that annexin 2 translocates from the cytoplasm to the cell-cell contact sites as cell confluence is established. Annexin 2, located in cholesterol rafts, binds to both the actin cytoskeleton and the VE-cad-based complex so the complex is docked to cholesterol rafts. These multiple connections prevent the lateral diffusion of the VE-cad-based complex, thus strengthening adherens junctions in the ultimate steps of maturation. Moreover, we observed that the down-regulation of annexin 2 by small interfering RNA induces a delocalization of VE-cad from adherens junctions and consequently a destabilization of these junctions. Furthermore, our data indicate that the decoupling of the annexin 2/p11 complex from the VE-cad-based junction, triggered by vascular endothelial growth factor treatment, facilitates the switch from a quiescent to an immature state.  相似文献   

7.
To remodel endothelial cell-cell adhesion, inflammatory cytokine- and angiogenic growth factor-induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.  相似文献   

8.
Tissue morphogenesis and maintenance of complex tissue architecture requires a variety of cell-cell junctions. Typically, cells adhere to one another through cadherin junctions, both adherens and desmosomal junctions, strengthened by association with cytoskeletal networks during development. Both β- and γ-catenins are reported to link classical cadherins to the actin cytoskeleton, but only γ-catenin binds to the desmosomal cadherins, which links them to intermediate filaments through its association with desmoplakin. Here we provide the first biochemical evidence that, in vivo, γ-catenin also mediates interactions between classical cadherins and the intermediate filament cytoskeleton, linked through desmoplakin. In the developing lens, which has no desmosomes, we discovered that vimentin became linked to N-cadherin complexes in a differentiation-state specific manner. This newly identified junctional complex was tissue specific but not unique to the lens. To determine whether in this junction N-cadherin was linked to vimentin through γ-catenin or β-catenin we developed an innovative “double” immunoprecipitation technique. This approach made possible, for the first time, the separation of N-cadherin/γ-catenin from N-cadherin/β-catenin complexes and the identification of multiple members of each of these isolated protein complexes. The study revealed that vimentin was associated exclusively with N-cadherin/γ-catenin junctions. Assembly of this novel class of cadherin junctions was coincident with establishment of the unique cytoarchitecture of lens fiber cells. In addition, γ-catenin had a distinctive localization to the vertices of these hexagonally shaped differentiating lens fiber cells, a region devoid of actin; while β-catenin co-localized with actin at lateral cell interfaces. We believe this novel vimentin-linked N-cadherin/γ-catenin junction provides the tensile strength necessary to establish and maintain structural integrity in tissues that lack desmosomes.  相似文献   

9.
Adducins tightly regulate actin dynamics which is critical for endothelial barrier function. Adducins were reported to regulate epithelial junctional remodeling by controlling the assembly of actin filaments at areas of cell-cell contact. Here, we investigated the role of α-adducin for endothelial barrier regulation by using microvascular human dermal and myocardial murine endothelial cells. Parallel transendothelial electrical resistance (TER) measurements and immunofluorescence analysis revealed that siRNA-mediated adducin depletion impaired endothelial barrier formation and led to severe fragmentation of VE-cadherin immunostaining at cell-cell borders. To further test whether the peripheral localization of α-adducin is functionally linked with the integrity of endothelial adherens junctions, junctional remodeling was induced by a Ca2+-switch assay. Ca2+-depletion disturbed both linear vascular endothelial (VE)-cadherin and adducin location along cell junctions, whereas their localization was restored following Ca2+-repletion. Similar results were obtained for α-adducin phosphorylated at a site typical for PKA (pSer481). To verify that endothelial barrier properties and junction reorganization can be effectively modulated by altering Ca2+-concentration, TER measurements were performed. Thus, Ca2+-depletion drastically reduced TER, whereas Ca2+-repletion led to recovery of endothelial barrier properties resulting in increased TER. Interestingly, the Ca2+-dependent increase in TER was also significantly reduced after efficient α-adducin downregulation. Finally, we report that inflammatory mediator-induced endothelial barrier breakdown is associated with loss of α-adducin from the cell membrane. Taken together, our results indicate that α-adducin is involved in remodeling of endothelial adhesion junctions and thereby contributes to endothelial barrier regulation.  相似文献   

10.
The function of the actin-binding domain of α-catenin, αABD, including its possible role in the direct anchorage of the cadherin–catenin complex to the actin cytoskeleton, has remained uncertain. We identified two point mutations on the αABD surface that interfere with αABD binding to actin and used them to probe the role of α-catenin–actin interactions in adherens junctions. We found that the junctions directly bound to actin via αABD were more dynamic than the junctions bound to actin indirectly through vinculin and that recombinant αABD interacted with cortical actin but not with actin bundles. This interaction resulted in the formation of numerous short-lived cortex-bound αABD clusters. Our data suggest that αABD clustering drives the continuous assembly of transient, actin-associated cadherin–catenin clusters whose disassembly is maintained by actin depolymerization. It appears then that such actin-dependent αABD clustering is a unique molecular mechanism mediating both integrity and reassembly of the cell–cell adhesive interface formed through weak cis- and trans-intercadherin interactions.  相似文献   

11.
Hypoxia/reoxygenation-induced changes in endothelial permeability are accompanied by endothelial actin cytoskeletal and adherens junction remodeling, but the mechanisms involved are uncertain. We therefore measured the activities of the Rho GTPases Rac1, RhoA, and Cdc42 during hypoxia/reoxygenation and correlated them with changes in endothelial permeability, remodeling of the actin cytoskeleton and adherens junctions, and production of ROS. Dominant negative forms of Rho GTPases were introduced into cells by adenoviral gene transfer and transfection, and inhibitors of NADPH oxidase, PI3 kinase, and Rho kinase were used to characterize the signaling pathways involved. In some experiments constitutively activated forms of RhoA and Rac1 were also used. We show for the first time that hypoxia/reoxygenation-induced changes in endothelial permeability result from coordinated actions of the Rho GTPases Rac1 and RhoA. Rac1 and RhoA rapidly respond to changes in oxygen tension, and their activity depends on NADPH oxidase- and PI3 kinase-dependent production of ROS. Rac1 acts upstream of RhoA, and its transient inhibition by acute hypoxia leads to activation of RhoA followed by stress fiber formation, dispersion of adherens junctions, and increased endothelial permeability. Reoxygenation strongly activates Rac1 and restores cortical localization of F-actin and VE-cadherin. This effect is a result of Rac1-mediated inhibition of RhoA and can be prevented by activators of RhoA, L63RhoA, and lysophosphatidic acid. Cdc42 activation follows the RhoA pattern of activation but has no effect on actin remodeling, junctional integrity, or endothelial permeability. Our results show that Rho GTPases act as mediators coupling cellular redox state to endothelial function.  相似文献   

12.
Several pathways are involved in the control of endothelial cell morphology, endothelial permeability and function in order to maintain vascular homeostasis. Here we report that protein kinase N3 (PKN3) appears to play a pivotal role in maintaining endothelial cell morphology, cell-cell junctions and motility. An RNAi-based cell biological approach in cultured human endothelial cells (HUVEC) revealed that knockdown of PKN3 expression gave rise to cells with divergent cell morphology, impaired locomotion, disturbed adherens junctions (AJ) integrity and irregular actin organization. Notably, knockdown of PKN3 cells led to improper stress fiber formation and marked adhesiveness of intercellular adherens junctions when cells became stimulated with the pro-inflammatory cytokine TNF-α. Moreover, TNF-α-induced ICAM-1 expression on the cell surface was reduced in cells with suppressed PKN3 expression. Finally, loss-of-function for PKN3 appeared to affect Pyk2 phosphorylation in endothelial cells. These observations suggest that PKN3 can be considered a novel protein implicated in remodeling the actin-adherens junction, possibly by linking ICAM-1-signaling with actin/AJ dynamics. We propose that loss of PKN3 function and concomitant aberrations in actin rearrangement may attenuate pro-inflammatory activation of endothelial cells.  相似文献   

13.
By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell–cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell–cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity.  相似文献   

14.
Clostridium sordellii lethal toxin (LT) is a glucosyltransferase which inactivates small GTPases from the Rho and Ras families. In the present work, we studied the effects of two variants, LT82 and LT9048, on the integrity of epithelial cell barrier using polarized MCCD (Mouse Cortical Collecting Duct) and MDCK (Madin-Darby Canine Kidney) cells. Our results demonstrate for the first time that LTs have very limited effects on tight junctions. In contrast, we show that both toxins modified the paracellular permeability within 2-4 h. Concomitantly LT82 and LT9048 induced a disorganization of basolateral actin filaments, without modifying apical actin. Both toxins mainly altered adherens junctions by removing E-cadherin-catenin complexes from the membrane to the cytosol. Similar effects on adherens junctions have been observed with other toxins, which directly or indirectly depolymerize actin. Thereby, Rac, a common substrate of both LTs, might play a central role in LT-dependent adherens junction alteration. Here, we show that adherens junction perturbation induced by LTs results neither from a direct effect of toxins on adherens junction proteins nor from an actin-independent Rac pathway, but rather from a Rac-dependent disorganization of basolateral actin cytoskeleton. This further supports that a dynamic equilibrium of cortical actin filaments is essential for functional E-cadherin organization in epithelia.  相似文献   

15.
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  相似文献   

16.
In endothelial cells specifically, cPLA2α translocates from the cytoplasm to the Golgi complex in response to cell confluence. Considering the link between confluence and cell–cell junction formation, and the emerging role of cPLA2α in intracellular trafficking, we tested whether Golgi-associated cPLA2α is involved in the trafficking of junction proteins. Here, we show that the redistribution of cPLA2α from the cytoplasm to the Golgi correlates with adherens junction maturation and occurs before tight junction formation. Disruption of adherens junctions using a blocking anti-VE-cadherin antibody reverses the association of cPLA2α with the Golgi. Silencing of cPLA2α and inhibition of cPLA2α enzymatic activity using various inhibitors result in the diminished presence of the transmembrane junction proteins VE-cadherin, occludin, and claudin-5 at cell–cell contacts, and in their accumulation at the Golgi. Altogether, our data support the idea that VE-cadherin triggers the relocation of cPLA2α to the Golgi and that in turn, Golgi-associated cPLA2α regulates the transport of transmembrane junction proteins through or from the Golgi, thereby controlling the integrity of endothelial cell–cell junctions.  相似文献   

17.
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockdown of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin-binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.  相似文献   

18.
Adherens junctions (AJs) are crucial for maintaining the integrity of epithelial tissues and are often disrupted during tumour progression. Rho family proteins have been shown to regulate adherens junctions. We find that activation of the effector kinase ROCK and acto-myosin contraction disrupts AJs downstream of Rho. In contrast, signalling through the Rho effector Dia1 is required to ensure a dynamically stable interface between cells and the maintenance of adherens junction complexes. The ability of Dia1 to regulate the actin network is crucial for the localization of adherens junction components to the cell periphery.  相似文献   

19.
E-cadherin-p120 catenin complexes are essential for adherens junction (AJ) formation and for the maintenance of the normal epithelial phenotype. PLEKHA7 was originally identified as a member of this complex that tethers microtubules to the AJs and supports their overall integrity. Recently, we revealed that PLEKHA7 regulates cellular behavior via miRNAs by associating with the microprocessor complex at the apical zonula adherens (ZA). We have also identified a new set of PLEKHA7 interacting partners at the apical ZA, via proteomics. Our analysis shows that the main groups of proteins associating with PLEKHA7 are cytoskeletal-related and RNA-binding proteins. Here, we provide extended evidence for association of PLEKHA7 with several of these proteins. We also show that PLEKHA7 loss activates the actin regulator cofilin in a p120-dependent manner, providing an explanation for the effects of PLEKHA7 on the cortical actin ring. Interestingly, PLEKHA7 regulates the levels and associates with PP1α, a phosphatase responsible for cofilin activation. Finally, we clarify the mode of regulation of the oncogenic miR-19a by PLEKHA7. Overall, our findings support a multi-layered role of PLEKHA7 in converging cytoskeletal dynamics and miRNA-mediated growth regulation at the ZA, with potentially critical implications in cancer that warrant further investigation.  相似文献   

20.
The initial pathophysiological events that characterize CCK-hyperstimulation pancreatitis include the breakdown of the actin filament system and disruption of cadherin-catenin protein complexes. Cadherins and catenins are part of adherens junctions, which may act as anchor for the cellular actin filament system. We examined the composition and regulation of adherens junctions during CCK-induced acinar cell damage. Freshly isolated CCK-stimulated rat pancreatic acini were examined for actin filaments and functional adherens junctions by immunocytology and laser confocal scanning microscopy or by coprecipitation and immunoblotting for E-cadherin, beta- and alpha-catenin, p120(ctn), and phosphotyrosine. In addition to E-cadherin and beta-catenin, acinar cells express the cadherin-regulatory protein p120(ctn) and the attachment protein alpha-catenin. Both colocalize and coimmunoprecipitate with E-cadherin in one complex, and all colocalize with the terminal actin web. Supramaximal secretory CCK concentrations (10 nM) initiated tyrosine phosphorylation of p120(ctn) but not of beta-catenin within 2 min, preceding the breakdown of the terminal actin web by several minutes. Under these conditions, the cadherin-catenin association within the adherens junction complex remained intact. We describe for the first time supramaximal CCK-dependent tyrosine phosphorylation of the adherens junction protein p120(ctn) and demonstrate the presence of an intact adherens junction protein complex in acinar cells. p120(ctn) may participate in the actin filament breakdown during experimental conditions mimicking pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号