首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect that growth factors such as epidermal growth factor (EGF) have on cell-cell adhesion is of interest in the study of cellular processes such as epithelial-mesenchymal transition. Because cell-cell adhesions cannot be measured directly, we use three-dimensional traction force microscopy to measure the tractions applied by clusters of MCF-10A cells to a compliant substrate beneath them before and after stimulating the cells with EGF. To better interpret the results, a finite element model, which simulates a cluster of individual cells adhered to one another and to the substrate with linear springs, is developed to better understand the mechanical interaction between the cells in the experiments. The experiments and simulations show that the cluster of cells acts collectively as a single unit, indicating that cell-cell adhesion remains strong before and after stimulation with EGF. In addition, the experiments and model emphasize the importance of three-dimensional measurements and analysis in these experiments.  相似文献   

2.
Mechanical interactions between cell and substrate are involved in vital cellular functions from migration to signal transduction. A newly developed technique, traction force microscopy, makes it possible to visualize the dynamic characteristics of mechanical forces exerted by fibroblasts, including the magnitude, direction, and shear. In the present study such analysis is applied to migrating normal and transformed 3T3 cells. For normal cells, the lamellipodium provides almost all the forces for forward locomotion. A zone of high shear separates the lamellipodium from the cell body, suggesting that they are mechanically distinct entities. Timing and distribution of tractions at the leading edge bear no apparent relationship to local protrusive activities. However, changes in the pattern of traction forces often precede changes in the direction of migration. These observations suggest a frontal towing mechanism for cell migration, where dynamic traction forces at the leading edge actively pull the cell body forward. For H-ras transformed cells, pockets of weak, transient traction scatter among small pseudopods and appear to act against one another. The shear pattern suggests multiple disorganized mechanical domains. The weak, poorly coordinated traction forces, coupled with weak cell-substrate adhesions, are likely responsible for the abnormal motile behavior of H-ras transformed cells.  相似文献   

3.
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues to better understand cell motility, force generation, cell-cell interaction, and assembly in an in vitro breast cancer model. MCF-10A non-tumorigenic mammary epithelial cells were observed on surfaces with varying fibronectin ligand concentration and polyacrylamide gel rigidity. Our data show that cell velocity is biphasic in both matrix rigidity and adhesiveness. The maximum cell migration velocity occurs only at specific combination of substrate stiffness and ligand density. We found cell-cell interactions reduce migration velocity. However, the traction forces cells exert onto the substrate increase linearly with both cues, with cells in pairs exerting higher maximum tractions observed over single cells. A relationship between force and motility shows a maximum in single cell velocity not observed in cell pairs. Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤ 1250 Pascals (Pa), implying the existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. Finally on gels with stiffness similar to pre-malignant breast tissue, 400 Pa, cells undergo multicellular assembly and division into 3D spherical aggregates on a 2D surface.  相似文献   

4.
Traction forces generated at cellular focal adhesions (FAs) play an essential role in regulating various cellular functions. These forces (1–100 nN) can be measured by observing the local displacement of a flexible substrate upon which cells have been plated. Approaches employing this method include using microfabricated arrays of poly(dimethylsiloxane) (PDMS) micropillars that bend by cellular traction forces. A tool capable of applying a force to FAs independently, by actively moving the micropillars, should become a powerful tool to delineate the cellular mechanotransduction mechanisms. Here, we developed a patterned magnetic micropillar array PDMS substrate that can be used for the mechanical stimulation of cellular FAs and the measurement of associated traction forces. The diameter, length, and center-to-center spacing of the micropillars were 3, 9, and 9 µm, respectively. Iron particles were embedded into the micropillars, enabling the pillars to bend in response to an external magnetic field, which also controlled their location on the substrate. Applying a magnetic field of 0.3 T bent the pillars by ∼4 µm and allowed transfer of external forces to the actin cytoskeleton through FAs formed on the pillar top. Using this approach, we investigated the traction force changes in cultured aortic smooth muscle cells (SMCs) after local compressive stimuli to release cell pretension. The mechanical responses of SMCs were roughly classified into two types: almost a half of the cells showed a little decrease of traction force at each pillar following compressive stimulation, although cell area increased significantly; and the rest showed the opposite, with increased forces and a simultaneous decrease in area. The traction forces of SMCs fluctuated markedly during the local compression. The root mean square of traction forces significantly increased during the compression, and returned to the baseline level after its release. These results suggest that the fluctuation of forces may be caused by active reorganization of the actin cytoskeleton and/or its dynamic interaction with myosin molecules. Thus, our magnetic micropillar substrate would be useful in investigating the mechanotransduction mechanisms of cells.  相似文献   

5.
Although there are several computational models that explain the trajectory that cells take during migration, till now little attention has been paid to the integration of the cell migration in a multi-signaling system. With that aim, a generalized model of cell migration and cell-cell interaction under multisignal environments is presented herein. In this work we investigate the spatio-temporal cell-cell interaction problem induced by mechano-chemo-thermotactic cues. It is assumed that formation of a new focal adhesion generates traction forces proportional to the stresses transmitted by the cell to the extracellular matrix. The cell velocity and polarization direction are calculated based on the equilibrium of the effective forces associated to cell motility. It is also assumed that, in addition to mechanotaxis signals, chemotactic and thermotactic cues control the direction of the resultant traction force. This model enables predicting the trajectory of migrating cells as well as the spatial and temporal distributions of the net traction force and cell velocity. Results indicate that the tendency of the cells is firstly to reach each other and then migrate towards an imaginary equilibrium plane located near the source of the signal. The position of this plane is sensitive to the gradient slope and the corresponding efficient factors. The cells come into contact and separate several times during migration. Adding other cues to the substrate (such as chemotaxis and/or thermotaxis) delays that primary contact. Moreover, in all states, the average local velocity and the net traction force of the cells decrease while the cells approach the cues source. Our findings are qualitatively consistent with experimental observations reported in the related literature.  相似文献   

6.
The scattering of Madin-Darby canine kidney cells in vitro mimics key aspects of epithelial-mesenchymal transitions during development, carcinoma cell invasion, and metastasis. Scattering is induced by hepatocyte growth factor (HGF) and is thought to involve disruption of cadherin-dependent cell-cell junctions. Scattering is enhanced on collagen and fibronectin, as compared with laminin1, suggesting possible cross talk between integrins and cell-cell junctions. We show that HGF does not trigger any detectable decrease in E-cadherin function, but increases integrin-mediated adhesion. Time-lapse imaging suggests that tension on cell-cell junctions may disrupt cell-cell adhesion. Varying the density and type of extracellular matrix proteins shows that scattering correlates with stronger integrin adhesion and increased phosphorylation of the myosin regulatory light chain. To directly test the role of integrin-dependent traction forces, substrate compliance was varied. Rigid substrates that produce high traction forces promoted scattering, in comparison to more compliant substrates. We conclude that integrin-dependent actomyosin traction force mediates the disruption of cell-cell adhesion during epithelial cell scattering.  相似文献   

7.
《Biophysical journal》2022,121(3):481-490
Cellular aggregation is a complex process orchestrated by various kinds of interactions depending on the environment. Different interactions give rise to different pathways of cellular rearrangement and the development of specialized tissues. To distinguish the underlying mechanisms, in this theoretical work, we investigate the spontaneous emergence of tissue patterns from an ensemble of single cells on a substrate following three leading pathways of cell-cell interactions, namely, direct cell adhesion contacts, matrix-mediated mechanical interaction, and chemical signaling. Our analysis shows that the growth kinetics of the aggregation process are distinctly different for each pathway and bear the signature of the specific cell-cell interactions. Interestingly, we find that the average domain size and the mass of the clusters exhibit a power law growth in time under certain interaction mechanisms hitherto unexplored. Further, as observed in experiments, the cluster size distribution can be characterized by stretched exponential functions showing distinct cellular organization processes.  相似文献   

8.
The mechanisms regulating neutrophil transmigration of vascular endothelium are not fully elucidated, but involve neutrophil firm attachment and passage through endothelial cell-cell junctions. The goal of this study was to characterize the tangential forces exerted by neutrophils during transendothelial migration at cell-cell junctions using an in vitro laminar shear flow model in which confluent activated endothelium is grown on a microfabricated pillar substrate. The tangential forces are deduced from the measurement of pillar deflection beneath the endothelial cell-cell junction as neutrophils transmigrate. The force diagram displays an initial force increase, which coincides with neutrophil penetration into the intercellular space and formation of a gap in VE-cadherin staining. This is followed by a rapid and large increase of traction forces exerted by endothelial cells on the substrate in response to the transmigration process and the disruption of cell-cell contacts. The average maximum force exerted by an actively transmigrating neutrophil is three times higher than the force generated by an adherent neutrophil that does not transmigrate. Furthermore, we show that substrate rigidity can modify the mechanical forces induced by the transmigration of a neutrophil through the endothelium. Our data suggest that the force induced by neutrophil transmigration plays a key role in the disruption of endothelial adherens junctions.  相似文献   

9.
The interactions between biochemical processes and mechanical signaling play important roles during various cellular processes such as wound healing, embryogenesis, metastasis, and cell migration. While traditional traction force measurements have provided quantitative information about cell matrix interactions in two dimensions, recent studies have shown significant differences in the behavior and morphology of cells when placed in three-dimensional environments. Hence new quantitative experimental techniques are needed to accurately determine cell traction forces in three dimensions. Recently, two approaches both based on laser scanning confocal microscopy have emerged to address this need. This study highlights the details, implementation and advantages of such a three-dimensional imaging methodology with the capability to compute cellular traction forces dynamically during cell migration and locomotion. An application of this newly developed three-dimensional traction force microscopy (3D TFM) technique to single cell migration studies of 3T3 fibroblasts is presented to show that this methodology offers a new quantitative vantage point to investigate the three-dimensional nature of cell-ECM interactions.  相似文献   

10.
This paper presents a new approach for the traction force microscopy (TFM) method which determines traction forces exerted by adherent cells on a thin, elastic polyacrylamide gel embedded with fluorescent microbeads. In this enhanced TFM method, a pattern recognition technique is first applied to match the pair of microbead embedded images before and after deformation, which subsequently provides the displacement field of the elastic substrate. Once the displacement field is obtained, the 3-D finite element method (FEM) is used to compute cell traction forces. The new TFM has been applied to determine traction forces of human tendon fibroblasts. Compared to existing TFM methods, the present method has the following advantages: (1) its displacement field obtained is associated with microbead movements; (2) it considers the finite thickness of the thin polyacrylamide gel and is therefore free from the infinite half-space approximation adopted by existing TFM methods; and (3) its computation procedure for determining cell traction forces is fast.  相似文献   

11.
To investigate the effects of cell-cell interactions on cellular function, the microenvironment surrounding cells should be precisely controlled. Here, we describe a cell patterning technique, which utilizes magnetic force and magnetite nanoparticles. This method was used to develop cell culture arrays for investigation of cell behaviors in angiogenesis. Pin holder devices that contain more than 6,000 pillars on the surface are used for fabricating the cell culture arrays by setting it on a magnet. The magnetically labeled cells were arranged by magnetic distribution. When the human umbilical vein endothelial cells are arranged at 250 microm intervals (5.9 cells/spot), the cells spread toward other cell cluster on adjacent spots in 4.5 h, and formed cord-like structures in 8.5 h. It was shown that cell-cell interactions were successfully investigated using magnetic cell arrangement.  相似文献   

12.
Actomyosin network under the plasma membrane of cells forms a cortical layer that regulates cellular deformations during different processes. What regulates the cortex? Characterized by its thickness, it is believed to be regulated by actin dynamics, filament-length regulators and myosin motor proteins. However, its regulation by cellular morphology (e.g. cell spread area) or mechanical microenvironment (e.g. substrate stiffness) has remained largely unexplored. In this study, super- and high-resolution imaging of actin in CHO cells demonstrates that at high spread areas (>450 μm2), the cortex is thinner, better separated as layers, and sensitive to deactivation of myosin II motors or reduction of substrate stiffness (and traction forces). In less spread cells (<400 μm2) such perturbations do not elicit a response. Myosin IIA's mechanosensing is limited here due to its lowered actin-bound fraction and higher turnover rate. Cofilin, in line with its competitive inhibitory role, is found to be overexpressed in these cells. To establish the causal relation, we initiate a spread area drop by de-adhesion and find enhanced actin dynamics and fragmentation along with oscillations and increase in thickness. This is more correlated to the reduction of traction forces than the endocytosis-based reduction in cell volume. Cortex thickness control by spread area is also found be true during differentiation of THP-1 monocytes to macrophages. Thus, we propose that spread area regulates cortex and its thickness by traction-based mechanosensing of myosin II.  相似文献   

13.
Cell migration involves complex physical and chemical interactions with the substrate. To probe the mechanical interactions under different regions of migrating 3T3 fibroblasts, we have disrupted cell-substrate adhesions by local application of the GRGDTP peptide, while imaging stress distribution on the substrate with traction force microscopy. Both spontaneous and GRGDTP-induced detachment of the trailing edge caused extensive cell shortening, without changing the overall level of traction forces or the direction of migration. In contrast, disruption of frontal adhesions caused dramatic, global loss of traction forces before any significant shortening of the cell. Although traction forces and cell migration recovered within 10-20 min of transient frontal treatment, persistent treatment with GRGDTP caused the cell to develop traction forces elsewhere and reorient toward a new direction. We conclude that contractile forces of a fibroblast are transmitted to the substrate through two distinct types of adhesions. Leading edge adhesions are unique in their ability to transmit active propulsive forces. Their functions cannot be transferred directly to existing adhesions upon detachment. Trailing end adhesions create passive resistance during cell migration and readily redistribute their loads upon detachment. Our results indicate the distinct nature of mechanical interactions at the leading versus trailing edges, which together generate the mechanical interactions for fibroblast migration.  相似文献   

14.
The role of matrix mechanics on cell behavior is under intense investigation. Cells exert contractile forces on their matrix and the matrix elasticity can alter these forces and cell migratory behavior. However, little is known about the contribution of matrix mechanics and cell-generated forces to stable cell-cell contact and tissue formation. Using matrices of varying stiffness and measurements of endothelial cell migration and traction stresses, we find that cells can detect and respond to substrate strains created by the traction stresses of a neighboring cell, and that this response is dependent on matrix stiffness. Specifically, pairs of endothelial cells display hindered migration on gels with elasticity below 5500 Pa in comparison to individual cells, suggesting these cells sense each other through the matrix. We believe that these results show for the first time that matrix mechanics can foster tissue formation by altering the relative motion between cells, promoting the formation of cell-cell contacts. Moreover, our data indicate that cells have the ability to communicate mechanically through their matrix. These findings are critical for the understanding of cell-cell adhesion during tissue formation and disease progression, and for the design of biomaterials intended to support both cell-matrix and cell-cell adhesion.  相似文献   

15.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   

16.
Cancer cells exist in a mechanically and chemically heterogeneous microenvironment which undergoes dynamic changes throughout neoplastic progression. During metastasis, cells from a primary tumor acquire characteristics that enable them to escape from the primary tumor and migrate through the heterogeneous stromal environment to establish secondary tumors. Despite being linked to poor prognosis, there are no direct clinical tests available to diagnose the likelihood of metastasis. Moreover, the physical mechanisms employed by metastatic cancer cells to migrate are poorly understood. Because metastasis of most solid tumors requires cells to exert force to reorganize and navigate through dense stroma, we investigated differences in cellular force generation between metastatic and non-metastatic cells. Using traction force microscopy, we found that in human metastatic breast, prostate and lung cancer cell lines, traction stresses were significantly increased compared to non-metastatic counterparts. This trend was recapitulated in the isogenic MCF10AT series of breast cancer cells. Our data also indicate that increased matrix stiffness and collagen density promote increased traction forces, and that metastatic cells generate higher forces than non-metastatic cells across all matrix properties studied. Additionally, we found that cell spreading for these cell lines has a direct relationship with collagen density, but a biphasic relationship with substrate stiffness, indicating that cell area alone does not dictate the magnitude of traction stress generation. Together, these data suggest that cellular contractile force may play an important role in metastasis, and that the physical properties of the stromal environment may regulate cellular force generation. These findings are critical for understanding the physical mechanisms of metastasis and the role of the extracellular microenvironment in metastatic progression.  相似文献   

17.
Mechanical forces play an important role in various cellular functions, such as tumor metastasis, embryonic development or tissue formation. Cell migration involves dynamics of adhesive processes and cytoskeleton remodelling, leading to traction forces between the cells and their surrounding extracellular medium. To study these mechanical forces, a number of methods have been developed to calculate tractions at the interface between the cell and the substrate by tracking the displacements of beads or microfabricated markers embedded in continuous deformable gels. These studies have provided the first reliable estimation of the traction forces under individual migrating cells. We have developed a new force sensor made of a dense array of soft micron-size pillars microfabricated using microelectronics techniques. This approach uses elastomeric substrates that are micropatterned by using a combination of hard and soft lithography. Traction forces are determined in real time by analyzing the deflections of each micropillar with an optical microscope. Indeed, the deflection is directly proportional to the force in the linear regime of small deformations. Epithelial cells are cultured on our substrates coated with extracellular matrix protein. First, we have characterized temporal and spatial distributions of traction forces of a cellular assembly. Forces are found to depend on their relative position in the monolayer : the strongest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. Consequently, these forces are quantified and correlated with the adhesion/scattering processes of the cells.  相似文献   

18.
Polymeric receptor-ligand complexes between interacting Eph and ephrin-expressing cells are regarded as dynamic intercellular signalling scaffolds that control cell-to-cell contact: the resulting Eph-ephrin signalling clusters function as positional cues that facilitate cell navigation and tissue patterning during normal and oncogenic development. The considerable complexity of this task, coordinating a multitude of cell movements and cellular interactions, is achieved by accurate translation of spatial information from Eph and ephrin expression gradients into fine-tuned changes in cell-cell adhesion and position. Here we review emerging evidence suggesting that the required combinatorial diversity is not only achieved by the large number of possible Eph-ephrin interactions and selective use of Eph forward and ephrin reverse signals, but in particular through the composition and signal capacity of Eph-ephrin clusters, which is adjusted dynamically to reflect overall Eph and ephrin surface densities on interacting cells. Fine-tuning is provided through multi-layered cluster assembly, where homo- and heterotypic Eph and ephrin interactions define the composition - whilst intracellular signalling feedbacks determine the size and lifetime - of signalling clusters.  相似文献   

19.
Cell adhesion to extracellular matrix is mediated by receptor-ligand interactions. When a cell first contacts a surface, it spreads, exerting traction forces against the surface and forming new bonds as its contact area expands. Here, we examined the changes in shape, actin polymerization, focal adhesion formation, and traction stress generation that accompany spreading of endothelial cells over a period of several hours. Bovine aortic endothelial cells were plated on polyacrylamide gels derivatized with a peptide containing the integrin binding sequence RGD, and changes in shape and traction force generation were measured. Notably, both the rate and extent of spreading increase with the density of substrate ligand. There are two prominent modes of spreading: at higher surface ligand densities cells tend to spread isotropically, whereas at lower densities of ligand the cells tend to spread anisotropically, by extending pseudopodia randomly distributed along the cell membrane. The extension of pseudopodia is followed by periods of growth in the cell body to interconnect these extensions. These cycles occur at very regular intervals and, furthermore, the extent of pseudopodial extension can be diminished by increasing the ligand density. Measurement of the traction forces exerted by the cell reveals that a cell is capable of exerting significant forces before either notable focal adhesion or stress fiber formation. Moreover, the total magnitude of force exerted by the cell is linearly related to the area of the cell during spreading. This study is the first to monitor the dynamic changes in the cell shape, spreading rate, and forces exerted during the early stages (first several hours) of endothelial cell adhesion.  相似文献   

20.
Voronoi tessellations have been used to model the geometric arrangement of cells in morphogenetic or cancerous tissues, however, so far only with flat hyper-surfaces as cell-cell contact borders. In order to reproduce the experimentally observed piecewise spherical boundary shapes, we develop a consistent theoretical framework of multiplicatively weighted distance functions, defining generalized finite Voronoi neighborhoods around cell bodies of varying radius, which serve as heterogeneous generators of the resulting model tissue. The interactions between cells are represented by adhesive and repelling force densities on the cell contact borders. In addition, protrusive locomotion forces are implemented along the cell boundaries at the tissue margin, and stochastic perturbations allow for non-deterministic motility effects. Simulations of the emerging system of stochastic differential equations for position and velocity of cell centers show the feasibility of this Voronoi method generating realistic cell shapes. In the limiting case of a single cell pair in brief contact, the dynamical nonlinear Ornstein–Uhlenbeck process is analytically investigated. In general, topologically distinct tissue conformations are observed, exhibiting stability on different time scales, and tissue coherence is quantified by suitable characteristics. Finally, an argument is derived pointing to a tradeoff in natural tissues between cell size heterogeneity and the extension of cellular lamellae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号