首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PUF proteins, a family of RNA-binding proteins, interact with the 3' untranslated regions (UTRs) of specific mRNAs to control their translation and stability. PUF protein action is commonly correlated with removal of the poly(A) tail of target mRNAs. Here, we focus on how PUF proteins enhance deadenylation and mRNA decay. We show that a yeast PUF protein physically binds Pop2p, which is a component of the Ccr4p-Pop2p-Not deadenylase complex, and that Pop2p is required for PUF repression activity. By binding Pop2p, the PUF protein simultaneously recruits the Ccr4p deadenylase and two other enzymes involved in mRNA regulation, Dcp1p and Dhh1p. We reconstitute regulated deadenylation in vitro and demonstrate that the PUF-Pop2p interaction is conserved in yeast, worms and humans. We suggest that the PUF-Pop2p interaction underlies regulated deadenylation, mRNA decay and repression by PUF proteins.  相似文献   

3.
It is by now well established that the estrogen receptor alpha (ER alpha) is transcribed from multiple promoters. One direct consequence of multiple promoters is the generation of mRNA variants with different 5'-untranslated regions (5'-UTRs). However, the potential roles of these individual mRNA variants are not known. All 5'-UTRs of ER alpha contain between one and six upstream open reading frames. In this study the effect of the 5'-UTRs of major human and mouse ER alpha mRNA variants on translation was evaluated. Some of the 5'-UTRs were found to strongly inhibit translation of the downstream open reading frame. Mutation of the upstream AUG codons partially or completely restored translation efficiency. A toeprinting analysis and assessment of the contribution of each AUG codon to the inhibitory effect on translation showed that leaky scanning and reinitiation occurs with these mRNAs. In conclusion, the upstream open reading frames in the 5'-UTRs of ER alpha mRNAs have the potential to regulate estrogen receptor alpha expression.  相似文献   

4.
PUF proteins are eukaryotic RNA-binding proteins that repress specific mRNAs. The mechanisms and corepressors involved in PUF repression remain to be fully identified. Here, we investigated the mode of repression by Saccharomyces cerevisiae Puf5p and Puf4p and found that Puf5p specifically requires Eap1p to repress mRNAs, whereas Puf4p does not. Surprisingly, we observed that Eap1p, which is a member of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP) class of translational inhibitors, does not inhibit the efficient polyribosome association of a Puf5p target mRNA. Rather, we found that Eap1p accelerates mRNA degradation by promoting decapping, and the ability of Eap1p to interact with eIF4E facilitates this activity. Deletion of EAP1 dramatically reduces decapping, resulting in accumulation of deadenylated, capped mRNA. In support of this phenotype, Eap1p associates both with Puf5p and the Dhh1p decapping factor. Furthermore, recruitment of Eap1p to downregulated mRNA is mediated by Puf5p. On the basis of these results, we propose that Puf5p promotes decapping by recruiting Eap1p and associated decapping factors to mRNAs. The implication of these findings is that a 4E-BP can repress protein expression by promoting specific mRNA degradation steps in addition to or in lieu of inhibiting translation initiation.  相似文献   

5.
6.
Proteins with Pumilio RNA binding domains (Puf proteins) are ubiquitous in eukaryotes. Some Puf proteins bind to the 3′-untranslated regions of mRNAs, acting to repress translation and promote degradation; others are involved in ribosomal RNA maturation. The genome of Trypanosoma brucei encodes eleven Puf proteins whose function cannot be predicted by sequence analysis. We show here that epitope-tagged TbPUF7 is located in the nucleolus, and associated with a nuclear cyclophilin-like protein, TbNCP1. RNAi targeting PUF7 reduced trypanosome growth and inhibited two steps in ribosomal RNA processing.  相似文献   

7.
8.
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.  相似文献   

9.
It is known that 5'-untranslated sequences of eukaryotic mRNA often contain AUG triplets, which may serve as the sites of translation initiation. It is thought that these leader open reading frames can fulfil the regulatory functions and encode functionally active proteins. However, they have been incompletely characterized. The article deals with the context organization of leader reading frames of eukaryotic mRNAs. It has been shown that their characteristics correlate with the position relative to the protein-encoding sequence, which may be associated with the efficiency of initiation of translation.  相似文献   

10.
扫描模型和遗漏扫描模型是真核生物mRNA翻译起始的两种主要机制,但其仍存在某些例外情况,如对具有多顺反子结构的mRNA,选择性翻译起始的发生机制目前仍不清楚.本研究基于GFP蛋白开放表达框(ORF)构建了一系列重组表达载体,用以转录在移码翻译顺序及同一翻译顺序下,AUG起始密码子处于不同序列背景,以及间隔不同距离的多顺反子结构mRNA.通过转染人Bel 7402细胞系,研究了这些多顺反子结构mRNA的翻译起始模式.结果表明,在移码翻译顺序下,多顺反子mRNA可翻译出对应的不同蛋白质,而在同一翻译顺序下,GFP蛋白表达框中的多个AUG密码子,仅有首位起始密码子可发挥作用,提示核糖体在从首位起始密码子开始翻译的同时,可能会有部分核糖体继续向下扫描并识别下游的起始密码子,而这种选择性的翻译起始效率,主要取决于密码子所处的序列背景及间隔距离等因素.  相似文献   

11.
12.
Human immunodeficiency virus type 1 (HIV-1) generates 16 alternatively spliced isoforms of env mRNA that contain the same overlapping open reading frames for Vpu and Env proteins but differ in their 5' untranslated regions (UTR). A subset of env mRNAs carry the extra upstream Rev initiation codon in the 5' UTR. We explored the effect of the alternative UTR on the translation of Vpu and Env proteins from authentic env mRNAs expressed from cDNA constructs. Vpu expression from the subset of env mRNA isoforms with exons containing an upstream Rev AUG codon was minimal. However, every env mRNA isoform expressed similar levels of Env protein. Mutations that removed, altered the strength of, or introduced upstream AUG codons dramatically altered Vpu expression but had little impact on the consistent expression of Env. These data show that the different isoforms of env mRNA are not redundant but instead regulate Vpu production in HIV-1-infected cells. Furthermore, while the initiation of Vpu translation conforms to the leaky ribosome-scanning model, the consistent Env synthesis infers a novel, discontinuous ribosome-scanning mechanism to translate Env.  相似文献   

13.
14.
Messenger RNAs (mRNAs) that contain premature translation termination codons (PTCs) are targeted for rapid degradation in all eukaryotes tested. The mechanisms of nonsense-mediated mRNA decay (NMD) have been described in considerable detail, but the biological roles of NMD in wild-type organisms are poorly understood. mRNAs of wild-type organisms known to be degraded by NMD ("natural targets" of NMD) include by-products of regulated alternative splicing, out-of-frame mRNAs derived from unproductive gene rearrangements, cytoplasmic pre-mRNAs, endogenous retroviral and transposon RNAs, and mRNAs having upstream open reading frames or other unusual sequence features. NMD may function to eliminate aberrant PTC-containing mRNAs in order to protect cells from expression of potentially deleterious truncated proteins. Pseudogenes are nonfunctional genes or gene fragments that accumulate mutations through genetic drift. Such mutations will often introduce shifts of reading frame and/or PTCs, and mRNAs of expressed pseudogenes may thus be substrates of NMD. We demonstrate that mRNAs expressed from C. elegans pseudogenes are degraded by NMD and discuss possible implications for both mRNA surveillance and protein evolution. We describe an expressed pseudogene that encodes a small nucleolar RNA (snoRNA) within an intron and suggest this represents an evolutionary intermediate between snoRNA-encoding host genes that do or do not encode proteins.  相似文献   

15.
PUF proteins bind mRNAs and regulate their translation, stability, and localization. Each PUF protein binds a selective group of mRNAs, enabling their coordinate control. We focus here on the specificity of Puf2p and Puf1p of Saccharomyces cerevisiae, which copurify with overlapping groups of mRNAs. We applied an RNA-adapted version of the DRIM algorithm to identify putative binding sequences for both proteins. We first identified a novel motif in the 3' UTRs of mRNAs previously shown to associate with Puf2p. This motif consisted of two UAAU tetranucleotides separated by a 3-nt linker sequence, which we refer to as the dual UAAU motif. The dual UAAU motif was necessary for binding to Puf2p, as judged by gel shift, yeast three-hybrid, and coimmunoprecipitation from yeast lysates. The UAAU tetranucleotides are required for optimal binding, while the identity and length of the linker sequences are less critical. Puf1p also binds the dual UAAU sequence, consistent with the prior observation that it associates with similar populations of mRNAs. In contrast, three other canonical yeast PUF proteins fail to bind the Puf2p recognition site. The dual UAAU motif is distinct from previously known PUF protein binding sites, which invariably possess a UGU trinucleotide. This study expands the repertoire of cis elements bound by PUF proteins and suggests new modes by which PUF proteins recognize their mRNA targets.  相似文献   

16.
LNX1 and LNX2 are E3 ubiquitin ligases that can interact with Numb — a key regulator of neurogenesis and neuronal differentiation. LNX1 can target Numb for proteasomal degradation, and Lnx mRNAs are prominently expressed in the nervous system, suggesting that LNX proteins play a role in neural development. This hypothesis remains unproven, however, largely because LNX proteins are present at very low levels in vivo. Here, we demonstrate expression of both LNX1 and LNX2 proteins in the brain for the first time. We clarify the cell-type specific expression of LNX isoforms in both the CNS and PNS, and identify a novel LNX1 isoform. Using luciferase reporter assays, we show that the 5′ untranslated region of the Lnx1_variant 2 mRNA, that generates the LNX1p70 isoform, strongly suppresses protein production. This effect is mediated in part by the presence of upstream open reading frames (uORFs), but also by a sequence element that decreases both mRNA levels and translational efficiency. By contrast, uORFs do not negatively regulate LNX1p80 or LNX2 expression. Instead, we find some evidence that protein turnover via proteasomal degradation may influence LNX1p80 levels in cells. These observations provide plausible explanations for the low levels of LNX1 proteins detected in vivo.  相似文献   

17.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

18.
19.
Prokaryotic toxin–antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why RelE requires its substrate mRNA to presented by the ribosome. In contrast, RelE homologue YoeB has a complete RNase fold and cleaves RNA independently of ribosomes in vitro. Here, we show that YoeB cleavage of mRNA is strictly dependent on translation of the mRNA in vivo. Non-translated model mRNAs were not cleaved whereas the corresponding wild-type mRNAs were cleaved efficiently. Model mRNAs carrying frameshift mutations exhibited a YoeB-mediated cleavage pattern consistent with the reading frameshift thus giving strong evidence that YoeB cleavage specificity was determined by the translational reading frame. In contrast, site-specific mRNA cleavage by MazF occurred independently of translation. In one case, translation seriously influenced MazF cleavage efficiency, thus solving a previous apparent paradox. We propose that translation enhances MazF-mediated cleavage of mRNA by destabilization of the mRNA secondary structure.  相似文献   

20.
Post‐splicing activities have been described for a subset of shuttling serine/arginine‐rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras‐PI 3‐kinase‐Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co‐regulated levels of isoform‐specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5′‐terminus by the eIF4F protein complex. Several viral and cellular mRNAs are translated in a cap‐independent manner by the action of cis‐acting mRNA elements named internal ribosome entry sites that direct internal ribosome binding to the mRNA. Here we use bicistronic reporters that generate mRNAs carrying two open reading frames, one translated in a cap‐dependent manner while the other by internal ribosome entry site‐dependent initiation, to show that in vivo over‐expression of SF2/ASF increases the ratio between cap‐dependent and internal ribosome entry site‐dependent translation. Consistently, knocking‐down of SF2/ASF causes the opposite effect. Changes in expression levels of SF2/ASF also affect alternative translation of an endogenous mRNA, that one coding for fibroblast growth factor‐2. These results strongly suggest a role for SF2/ASF as a regulator of alternative translation, meaning the generation of different proteins by the balance among these two translation initiation mechanisms, and expand the known potential of SF2/ASF to regulate proteomic diversity to the translation field. J. Cell. Biochem. 107: 826–833, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号