共查询到20条相似文献,搜索用时 8 毫秒
1.
J. Kim Holloway Meisha A. Morelli Peter L. Borst Paula E. Cohen 《The Journal of cell biology》2010,188(6):779-789
Bloom’s syndrome (BS) is an autosomal recessive disorder characterized by growth retardation, cancer predisposition, and sterility. BS mutated (Blm), the gene mutated in BS patients, is one of five mammalian RecQ helicases. Although BLM has been shown to promote genome stability by assisting in the repair of DNA structures that arise during homologous recombination in somatic cells, less is known about its role in meiotic recombination primarily because of the embryonic lethality associated with Blm deletion. However, the localization of BLM protein on meiotic chromosomes together with evidence from yeast and other organisms implicates a role for BLM helicase in meiotic recombination events, prompting us to explore the meiotic phenotype of mice bearing a conditional mutant allele of Blm. In this study, we show that BLM deficiency does not affect entry into prophase I but causes severe defects in meiotic progression. This is exemplified by improper pairing and synapsis of homologous chromosomes and altered processing of recombination intermediates, resulting in increased chiasmata. Our data provide the first analysis of BLM function in mammalian meiosis and strongly argue that BLM is involved in proper pairing, synapsis, and segregation of homologous chromosomes; however, it is dispensable for the accumulation of recombination intermediates. 相似文献
2.
MEK (MAPK kinase) is an upstream protein kinase of MAPK in the MOS/MEK/MAPK/p90rsk signaling pathway. We previously reported the function and regulation of MAPK during rat oocyte maturation. In this study, we further investigated the localization and possible roles of MEK1/2. First, immunofluorescent staining revealed that p-MEK1/2 was restricted to the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), p-MEK1/2 condensed in the vicinity of chromosomes and then translocated to the spindle poles at metaphase I, while spindle microtubules stained faintly. When the oocyte went through anaphase I and telophase I, p-MEK1/2 disappeared from spindle poles and became associated with the midbody. By metaphase II, p-MEK1/2 was again localized to the spindle poles. Second, p-MEK1/2 was localized to the centers of cytoplasmic microtubule asters induced by taxol. Third, p-MEK1/2 co-localized with gamma-tubulin in microtubule-organizing centers (MTOCs). Forth, treatment with U0126, a non-competitive MEK1/2 inhibitor, did not affect germinal vesicle breakdown, but caused chromosome mis-alignment in all MI oocytes examined and abnormal spindle organization as well as small cytoplasmic spindle-like structure formation in MII oocytes. Finally, U0126 reduced the number of cytoplasmic asters induced by taxol. Our data suggest that MEK1/2 has regulatory functions in microtubule assembly and spindle organization during rat oocyte meiotic maturation. 相似文献
3.
Wang K Jiang GJ Wei L Liang XW Miao DQ Sun SC Guo L Wang ZB Lu SS 《Zygote (Cambridge, England)》2011,19(4):307-313
Survivin is a novel member of the inhibitor of apoptosis gene family that bear baculoviral IAP repeats (BIRs), whose physiological roles in regulating meiotic cell cycle need to be determined. Confocal microscopy was employed to observe the localization of survivin in rat oocytes. At the germinal vesicle (GV) stage, survivin was mainly concentrated in the GV. At the prometaphase I (pro-MI) and metaphase I (MI) stage, survivin was mainly localized at the kinetochores, with a light staining detected on the chromosomes. After transition to anaphase I or telophase I stage, survivin migrated to the midbody, and signals on the kinetochores and chromosomes disappeared. At metaphase II (MII) stage, survivin became mainly localized at the kinetochores again. Microinjection of oocytes with anti-survivin antibodies at the beginning of the meiosis, thus blocking the normal function of survivin, resulted in abnormal spindle assembly, chromosome segregation and first polar body emission. These results suggest that survivin is involved in regulating the meiotic cell cycle in rat oocytes. 相似文献
4.
5.
Chunling Li Feiyang Diao Danhong Qiu Manxi Jiang Xiaoyan Li Longsen Han Ling Li Xiaojing Hou Juan Ge Xianghong Ou Jiayin Liu Qiang Wang 《Journal of cellular physiology》2019,234(1):661-668
SET-domain-containing 2 (SETD2), a member of the histone lysine methyltransferase family, has been reported to be involved in multiple biological processes. However, the function of SETD2 during oocyte maturation has not been addressed. In this study, we find that mouse oocytes are incapable of progressing through meiosis completely once SETD2 is specifically depleted. These oocytes present an abnormal spindle morphology and deficient chromosome movement, with disrupted kinetochore–microtubule attachments, consequently producing aneuploidy eggs. In line with this, the BubR1 signal is markedly elevated in metaphase kinetochores of oocytes with SETD2 depletion, indicative of the activation of spindle assembly checkpoint. In addition, we note that loss of SETD2 results in a drastic decrease in the trimethylation level of H3K36 in oocytes. Collectively, our data demonstrate that SETD2 is required for oocyte maturation and indicate a novel mechanism controlling the meiotic apparatus. 相似文献
6.
Von Stetina JR Tranguch S Dey SK Lee LA Cha B Drummond-Barbosa D 《Development (Cambridge, England)》2008,135(22):3697-3706
Meiosis is coupled to gamete development and must be well regulated to prevent aneuploidy. During meiotic maturation, Drosophila oocytes progress from prophase I to metaphase I. The molecular factors controlling meiotic maturation timing, however, are poorly understood. We show that Drosophila alpha-endosulfine (endos) plays a key role in this process. endos mutant oocytes have a prolonged prophase I and fail to progress to metaphase I. This phenotype is similar to that of mutants of cdc2 (synonymous with cdk1) and of twine, the meiotic homolog of cdc25, which is required for Cdk1 activation. We found that Twine and Polo kinase levels are reduced in endos mutants, and identified Early girl (Elgi), a predicted E3 ubiquitin ligase, as a strong Endos-binding protein. In elgi mutant oocytes, the transition into metaphase I occurs prematurely, but Polo and Twine levels are unaffected. These results suggest that Endos controls meiotic maturation by regulating Twine and Polo levels, and, independently, by antagonizing Elgi. Finally, germline-specific expression of the human alpha-endosulfine ENSA rescues the endos mutant meiotic defects and infertility, and alpha-endosulfine is expressed in mouse oocytes, suggesting potential conservation of its meiotic function. 相似文献
7.
Teng Zhang Yang Zhou Shu-Tao Qi Zhen-Bo Wang Wei-Ping Qian Ying-Chun Ouyang Wei Shen Heide Schatten Qing-Yuan Sun 《Cell cycle (Georgetown, Tex.)》2015,14(16):2701-2710
Nuf2 plays an important role in kinetochore-microtubule attachment and thus is involved in regulation of the spindle assembly checkpoint in mitosis. In this study, we examined the localization and function of Nuf2 during mouse oocyte meiotic maturation. Myc6-Nuf2 mRNA injection and immunofluorescent staining showed that Nuf2 localized to kinetochores from germinal vesicle breakdown to metaphase I stages, while it disappeared from the kinetochores at the anaphase I stage, but relocated to kinetochores at the MII stage. Overexpression of Nuf2 caused defective spindles, misaligned chromosomes, and activated spindle assembly checkpoint, and thus inhibited chromosome segregation and metaphase-anaphase transition in oocyte meiosis. Conversely, precocious polar body extrusion was observed in the presence of misaligned chromosomes and abnormal spindle formation in Nuf2 knock-down oocytes, causing aneuploidy. Our data suggest that Nuf2 is a critical regulator of meiotic cell cycle progression in mammalian oocytes. 相似文献
8.
《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2002,513(1-2):197-203
Centromere protein B (CENP-B) is a constitutive protein that binds to a highly conserved 17 bp motif located at most mammalian centromeres. To determine whether disruption of this gene affects chromosome segregation in male germ cells, we evaluated the frequencies of disomic and diploid sperm in CENP-B heterozygous and homozygous null mice using the mouse epididymal sperm aneuploidy (m-ESA) assay, a multicolor FISH method with probes for chromosomes X, Y and 8. The specificity and sensitivity of the m-ESA assay was demonstrated using Robertsonian (2.8) translocation heterozygotes as positive controls for sperm aneuploidy. Our results show that the frequencies of disomic and diploid sperm did not differ significantly between CENP-B heterozygous and homozygous null mice (P≥0.5) or from 129/Swiss isogenic mice (P≥0.5) and B6C3F1 mice (P≥0.2). These findings indicate that CENP-B does not have an essential role during chromosome segregation in male meiosis. 相似文献
9.
In Xenopus oocytes, the c-mos proto-oncogene product has been proposed to act downstream of progesterone to control the entry into meiosis I, the transition from meiosis I to meiosis II, which is characterized by the absence of S phase, and the metaphase II arrest seen prior to fertilization. Here, we report that inhibition of Mos synthesis by morpholino antisense oligonucleotides does not prevent the progesterone-induced initiation of Xenopus oocyte meiotic maturation, as previously thought. Mos-depleted oocytes complete meiosis I but fail to arrest at metaphase II, entering a series of embryonic-like cell cycles accompanied by oscillations of Cdc2 activity and DNA replication. We propose that the unique and conserved role of Mos is to prevent mitotic cell cycles of the female gamete until the fertilization in Xenopus, starfish and mouse oocytes. 相似文献
10.
Kim Osman Eugenio Sanchez‐Moran Sarah C Mann Gareth H Jones F Chris H Franklin 《The EMBO journal》2009,28(4):394-404
Replication protein A (RPA) is involved in many aspects of DNA metabolism including meiotic recombination. Many species possess a single RPA1 gene but Arabidopsis possesses five RPA1 paralogues. This feature has enabled us to gain further insight into the meiotic role of RPA1. Proteomic analysis implicated one of the AtRPA1 family (AtRPA1a) in meiosis. Immunofluorescence studies confirmed that AtRPA1a is associated with meiotic chromosomes from leptotene through to early pachytene. Analysis of an Atrpa1a mutant revealed that AtRPA1a is not essential at early stages in the recombination pathway. DNA double‐strand breaks are repaired in Atrpa1a, but the mutant is defective in the formation of crossovers, exhibiting a 60% reduction in chiasma frequency. Consistent with this, localization of recombination proteins AtRAD51 and AtMSH4 appears normal, whereas the numbers of AtMLH1 and AtMLH3 foci at pachytene are significantly reduced. This suggests that the defect in Atrpa1a is manifested at the stage of second‐end capture. Analysis of Atrpa1a/Atmsh4 and Atrpa1a/Atmlh3 double mutants indicates that loss of AtRPA1a predominantly affects the formation of class I, interference‐dependent crossovers. 相似文献
11.
López Correa C Brems H Lázaro C Marynen P Legius E 《American journal of human genetics》2000,66(6):1969-1974
Neurofibromatosis type 1 is a common autosomal dominant disorder caused by mutations of the NF1 gene on chromosome 17. In only 5%-10% of cases, a microdeletion including the NF1 gene is found. We analyzed a set of polymorphic dinucleotide-repeat markers flanking the microdeletion on chromosome 17 in a group of seven unrelated families with a de novo NF1 microdeletion. Six of seven microdeletions were of maternal origin. The breakpoints of the microdeletions of maternal origin were localized in flanking paralogous sequences, called "NF1-REPs." The single deletion of paternal origin was shorter, and no crossover occurred on the paternal chromosome 17 during transmission. Five of the six cases of maternal origin were informative, and all five showed a crossover, between the flanking markers, after maternal transmission. The observed crossovers flanking the NF1 region suggest that these NF1 microdeletions result from an unequal crossover in maternal meiosis I, mediated by a misalignment of the flanking NF1-REPs. 相似文献
12.
SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation 下载免费PDF全文
Juan Zeng Manxi Jiang Xinghan Wu Feiyang Diao Danhong Qiu Xiaojing Hou Haichao Wang Ling Li Chunling Li Juan Ge Jiayin Liu Xianghong Ou Qiang Wang 《Aging cell》2018,17(4)
SIRT4 modulates energy homeostasis in multiple cell types and tissues. However, its role in meiotic oocytes remains unknown. Here, we report that mouse oocytes overexpressing SIRT4 are unable to completely progress through meiosis, showing the inadequate mitochondrial redistribution, lowered ATP content, elevated reactive oxygen species (ROS) level, with the severely disrupted spindle/chromosome organization. Moreover, we find that phosphorylation of Ser293‐PDHE1α mediates the effects of SIRT4 overexpression on metabolic activity and meiotic events in oocytes by performing functional rescue experiments. By chance, we discover the SIRT4 upregulation in oocytes from aged mice; and importantly, the maternal age‐associated deficient phenotypes in oocytes can be partly rescued through the knockdown of SIRT4. These findings reveal the critical role for SIRT4 in the control of energy metabolism and meiotic apparatus during oocyte maturation and indicate that SIRT4 is an essential factor determining oocyte quality. 相似文献
13.
Bo Shi Qi-Quan Huang Robert Birkett Renee Doyle Andrea Dorfleutner Christian Stehlik 《Autophagy》2017,13(2):285-301
We previously observed that SNAPIN, which is an adaptor protein in the SNARE core complex, was highly expressed in rheumatoid arthritis synovial tissue macrophages, but its role in macrophages and autoimmunity is unknown. To identify SNAPIN's role in these cells, we employed siRNA to silence the expression of SNAPIN in primary human macrophages. Silencing SNAPIN resulted in swollen lysosomes with impaired CTSD (cathepsin D) activation, although total CTSD was not reduced. Neither endosome cargo delivery nor lysosomal fusion with endosomes or autophagosomes was inhibited following the forced silencing of SNAPIN. The acidification of lysosomes and accumulation of autolysosomes in SNAPIN-silenced cells was inhibited, resulting in incomplete lysosomal hydrolysis and impaired macroautophagy/autophagy flux. Mechanistic studies employing ratiometric color fluorescence on living cells demonstrated that the reduction of SNAPIN resulted in a modest reduction of H+ pump activity; however, the more critical mechanism was a lysosomal proton leak. Overall, our results demonstrate that SNAPIN is critical in the maintenance of healthy lysosomes and autophagy through its role in lysosome acidification and autophagosome maturation in macrophages largely through preventing proton leak. These observations suggest an important role for SNAPIN and autophagy in the homeostasis of macrophages, particularly long-lived tissue resident macrophages. 相似文献
14.
Nitric oxide is essential for optimal meiotic maturation of murine cumulus-oocyte complexes in vitro 总被引:11,自引:0,他引:11
This study was conducted to determine whether endothelial-derived nitric oxide synthase (eNOS) affects meiotic maturation of mouse oocytes in vitro. Cumulus-oocyte complexes (COC) were isolated from ovarian follicles of 27-day-old PMSG-primed wildtype (WT), and eNOS-knockout (eNOS-KO) females, and cultured in drops of medium under oil at 37 degrees C for 16-18 hr. Experiment 1 was carried out to determine effects of eNOS deficiency on the ability of COC to mature in vitro. To determine whether acute synthesis of nitric oxide (NO) was required for oocyte maturation, COC collected from WT mice were cultured in medium without (control) or with different doses of N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS (exp. 2). To assess effects of NO deficiency on the kinetics of germinal vesicle breakdown (GVBD), COC from WT and eNOS-KO females were observed for 3.5 hr. COC from WT females were also incubated in medium without or with L-NAME (exp. 3 and 4). After the culture period, cumulus cells were removed, and oocytes were counted and classified as metaphase II (M II), metaphase I (M I) or showing atypical (degenerative) morphology. To determine viability and nuclear morphology of oocytes, they were stained with fluorescein diacetate or 4,6-diamidine-2'-phenylindole dihydrochloride, respectively. There were no differences in body weights but ovarian weights were lower in eNOS-KO mice compared with WT mice (P < 0.05). Ovaries from eNOS-KO mice contained fewer COC collected relative to WT mice (P < 0.01). Maturation of COC from eNOS-KO mice or WT oocytes treated with L-NAME resulted in a lower percentage of oocytes at M II stage (P < 0.01 and P < 0.05, respectively) and a higher percentage of oocytes at M I or atypical stages compared with those from WT (P < 0.01 and P < 0.05, respectively). Many oocytes that showed either an arrest in M I stage or abnormal morphology were not viable. Several oocytes in M II stage demonstrated abnormalities in distribution of maternal chromosomes. Our data demonstrate that eNOS-derived NO is a key modulator of oocyte meiotic maturation in vitro. These results support our previous observations in vivo and indicate that eNOS/NO has independent functions in both oocyte maturation and follicular/oocyte development. 相似文献
15.
Toxoplasma gondii TFP1 is an essential transporter family protein critical for microneme maturation and exocytosis 下载免费PDF全文
Pierre‐Mehdi Hammoudi Bohumil Maco Sunil Kumar Dogga Karine Frénal Dominique Soldati‐Favre 《Molecular microbiology》2018,109(2):225-244
Invasion and egress are two key steps in the lytic cycle of Apicomplexa that are governed by the sequential discharge of proteins from two apical secretory organelles called micronemes and rhoptries. In Toxoplasma gondii, the biogenesis of these specialized organelles depends on the post Golgi trafficking machinery, forming an endosomal‐like compartment (ELC) resembling endomembrane systems found in eukaryotes. In this study, we have characterized four phylogenetically related Transporter Facilitator Proteins (TFPs) conserved among the apicomplexans. TFP1 localises to the micronemes and ELC, TFP2 and TFP3 to the rhoptries and TFP4 to the Golgi. TFP1 crucially contributes to parasite fitness and survival while the other members of this family are dispensable. Conditional depletion of TFP1 impairs microneme biogenesis and leads to a complete block in exocytosis, which hampers gliding motility, attachment, invasion and egress. Morphological investigations revealed that TFP1 participates in the condensation of the microneme content, suggesting the transport of a relevant molecule for maintaining the intraluminal microenvironment necessary for organelle maturation and exocytosis. In absence of TFP2, rhoptries adopt a considerable elongated shape, but the abundance, processing or secretion of the rhoptry content are not affected. These findings establish the relevance of TFPs in organelle maturation of T. gondii. 相似文献
16.
BACKGROUND: While double-strand break (DSB) repair is vital to the survival of cells during both meiosis and mitosis, the preferred mechanism of repair differs drastically between the two types of cell cycle. Thus, during meiosis, it is the homologous chromosome rather than the sister chromatid that is used as a repair template. RESULTS: Cells attempting to undergo meiosis in the absence of Mnd1 arrest in prophase I due to the activation of the Mec1 DNA-damage checkpoint accumulating hyperresected DSBs and aberrant synapsis. Sporulation of mnd1Delta strains can be restored by deleting RED1 or HOP1, which permits repair of DSBs by using the sister chromatid as a repair template. Mnd1 localizes to chromatin as foci independently of DSB formation, axial element (AE) formation, and synaptonemal complex (SC) formation and does not colocalize with Rad51. Mnd1 does not preferentially associate with hotspots of recombination. CONCLUSIONS: Our results suggest that Mnd1 acts specifically to promote DSB repair by using the homologous chromosome as a repair template. The presence of Rec8, Red1, or Hop1 renders Mnd1 indispensable for DNA repair, presumably through the establishment of interhomolog (IH) bias. Localization studies suggest that Mnd1 carries out this function without being specifically recruited to the sites of DNA repair. We propose a model in which Mnd1 facilitates chromatin accessibility, which is required to allow strand invasion in meiotic chromatin. 相似文献
17.
Lisa Tomascik-Cheeseman Francesco Marchetti Xiu Lowe Fay L Shamanski Joginder Nath Roger A Pedersen Andrew J Wyrobek 《Mutation research》2002,513(1-2):197-203
Centromere protein B (CENP-B) is a constitutive protein that binds to a highly conserved 17bp motif located at most mammalian centromeres. To determine whether disruption of this gene affects chromosome segregation in male germ cells, we evaluated the frequencies of disomic and diploid sperm in CENP-B heterozygous and homozygous null mice using the mouse epididymal sperm aneuploidy (m-ESA) assay, a multicolor FISH method with probes for chromosomes X, Y and 8. The specificity and sensitivity of the m-ESA assay was demonstrated using Robertsonian (2.8) translocation heterozygotes as positive controls for sperm aneuploidy. Our results show that the frequencies of disomic and diploid sperm did not differ significantly between CENP-B heterozygous and homozygous null mice (P> or = 0.5) or from 129/Swiss isogenic mice (P> or = 0.5) and B6C3F1 mice (P> or = 0.2). These findings indicate that CENP-B does not have an essential role during chromosome segregation in male meiosis. 相似文献
18.
Mark Terasaki 《Experimental cell research》2010,316(16):2654-2663
The maturation hormone 1-methyladenine (1-MA) causes meiotic resumption of prophase arrested immature starfish oocytes. Continuous exposure to ≥ 0.5 µM 1-MA causes germinal vesicle breakdown (GVBD) in ∼ 20 min, but oocytes pretreated for > 30 min with a subthreshold dose of 1-MA undergo GVBD much faster (∼ 10 min) when they are exposed to 1 µM 1-MA. Furthermore, a very low subthreshold 1-MA suffices to start the maturation process: oocytes exposed to 0.005 µM 1-MA for up to 10 min followed by 1 µM 1-MA is equivalent to continuous exposure to 1 µM 1-MA. These dose and timing relationships indicate that there is a two-stage dependence on 1-MA. A possible explanation for this dependence is that there are two processes involved: an initial process that is triggered by a low dose of 1-MA, and a second process that cannot start until the first process is completed and is stimulated by a higher dose of 1-MA. These subthreshold 1-MA effects on GVBD timing are not directly coupled to changes in calcium physiology that also occur during maturation. Subthreshold 1-MA was found to cause a transient accumulation of Cdc2/cyclin B into the nucleus. The two-stage dependence indicates that there are unsuspected features in this well-studied pathway leading to GVBD. In the animal, this hormone dependence may help to synchronize maturation throughout all parts of the ovary. 相似文献
19.
Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. 总被引:2,自引:0,他引:2
Oocytes secrete soluble factors that regulate the growth and differentiation of follicular cells, including maintenance of the distinctive cumulus cell phenotype. This study determines whether the mitogenic activity of oocytes is developmentally regulated and examines the responsiveness of follicular cells to oocytes at different stages of follicular development. Prepubertal SV129 mice of varying ages were primed with 5 IU equine chorionic gonadotropin (eCG) and oocytes/zygotes collected either 46 h post-eCG (immature oocytes), 12 h after administration of 5 IU human CG (hCG; ovulated ova), or 12 h post-hCG and mating (zygotes). Mural granulosa cells (MGC) from antral follicles and GC from preantral follicles were cultured +/- denuded oocytes (DO) for 18 h, followed by a 6-h pulse of [(3)H]thymidine as an indicator of cellular DNA synthesis. Coculturing MGC with meiotically maturing oocytes led to a dose-dependent increase in [(3)H]thymidine incorporation (20-fold above control levels at 0.5 DO/microl). However, [(3)H] counts remained unchanged from control levels when cultured with meiotically incompetent DO from 11- to 15-day-old mice (3% germinal vesicle breakdown; GVB), irrespective of dose of DO or developmental status of GC (MGC or preantral GC). In some treatments, spontaneous meiotic resumption of competent oocytes was prevented by culturing with 5 microM milrinone, a selective inhibitor of oocyte-specific cyclic nucleotide phosphodiesterase. The mitogenic capacity of oocytes was found to decline during and after oocyte maturation. [(3)H]Thymidine incorporation in MGC was highest (11-fold above controls) when cultured with meiotically inhibited (milrinone-treated) GV DO, stimulated 5.5-fold by culture with maturing oocytes, 3-fold with ovulated ova, and unstimulated by zygotes. [(3)H]Thymidine incorporation in MGC was not altered by the dose of milrinone, either in the presence or absence of DO. Metaphase I marked the beginning of the decline in the capacity of oocytes to promote MGC DNA synthesis. These results demonstrate that the capacity of oocytes to promote proliferation of granulosa cells follows a developmental program, closely linked to oocyte meiotic status, increasing with the acquisition of meiotic competence and declining during and after oocyte maturation. 相似文献
20.