首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of analysis in evaluating the hepatoprotective action of ethanolic extract of M. azedarach (MAE) and P. longum (PLE) with their combination biherbal extract (BHE) against carbon tetrachloride (CCl4) induced hepatic damage is reported in albino rats. There was a marked elevation of serum marker enzyme levels in CCl4 treated rats, which were restored towards normalization in the drug (MAE and/or PLE:50 mg/kg body weight po, once daily for 14 days) treated animals. The biochemical parameters like total protein, total bilirubin, total cholesterol, triglycerides, and urea were also restored towards normal levels. The combined BHE showed more significant reduction of the enzymes than MAE or PLE against CCl4 induced hepatotoxicity. The results strongly indicate that BHE has more potent hepatoprotective action than MAE or PLE individually against CCl4 induced hepatic damage in rats. Among these extracts, BHE showed similar hepatoprotective action to silymarin, which was the positive control in this study.  相似文献   

2.
Treatment of rats with paracetamol and CCl4 produced a significant increase in the levels of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), total and direct bilirubin. Rats pretreated with methanolic extract of roots of H. indicus (100-500 mg/kg body weight, po) exhibited rise in the levels of these enzymes but it was significantly less as compared to those treated with paracetamol or CCl4 alone. The results of methanolic extract of H. indicus were comparable with the standard hepatoprotective agent silymarin (100 mg/kg). Maximum hepatoprotective effect was found to be at the dose of 250 mg/kg body weight in case of CCl4 induced hepatic damage while 500 mg/kg body weight in case of paracetamol induced hepatic damage. The results suggest that methanolic extract of H. indicus roots possesses a potential antihepatotoxic activity.  相似文献   

3.
4.
Although the various biological roles of thymosin β4 (Tβ4) have been studied widely, the effect of Tβ4 and Tβ4-expressing cells in the liver remains unclear. Therefore, we investigated the expression and function of Tβ4 in chronically damaged livers. CCl4 was injected into male mice to induce a model of chronic liver disease. Mice were sacrificed at 6 and 10 weeks after CCl4 treatment, and the livers were collected for biochemical analysis. The activated LX-2, human hepatic stellate cell (HSC) line, were transfected with Tβ4-specific siRNA and activation markers of HSCs were examined. Compared to HepG2, higher expression of Tβ4 in RNA and protein levels was detected in the activated LX-2. In addition, Tβ4 was up-regulated in human liver with advanced liver fibrosis. The expression of Tβ4 increased during mouse HSC activation. Tβ4 was also up-regulated and Tβ4-positive cells were co-localized with α-smooth muscle actin (α-SMA) in the livers of CCl4-treated mice, whereas such cells were rarely detected in the livers of corn-oil treated mice. The suppression of Tβ4 in LX-2 cells by siRNA induced the down-regulation of HSC activation-related genes, tgf-β, α-sma, collagen, and vimentin, and up-regulation of HSC inactivation markers, ppar-γ and gfap. Immunofluorescent staining detected rare co-expressing cells with Tβ4 and α-SMA in Tβ4 siRNA-transfected cells. In addition, cytoplasmic lipid droplets were observed in Tβ4 siRNA-treated cells. These results demonstrate that activated HSCs expressed Tβ4 in chronically damaged livers, and this endogenous expression of Tβ4 influenced HSC activation, indicating that Tβ4 might contribute to liver fibrosis by regulating HSC activation.  相似文献   

5.
Silymarin improves metabolism and disposition of aspirin in cirrhotic rats   总被引:1,自引:0,他引:1  
M Mourelle  L Favari 《Life sciences》1988,43(3):201-207
The profile of urinary salicylate metabolites was determined after an i.p. administration of acetylsalicylic acid (ASA) to CCl4-cirrhotic rats to rats which in addition to CCl4 received an oral dose of silymarin throughout the CCl4 treatment to produce cirrhosis and to control groups. ASA esterase activity was determined in serum and livers. The time course of plasma concentration of salicylates in similar groups was followed after the i.p. injection of ASA. The cirrhotic animals showed a lack of urinary glucuronides and an increase in urinary gentisic and salicylic acids. The activities of plasma and serum ASA esterase were significantly increased in cirrhosis and the plasma half-life of ASA was reduced. The simultaneous administration of silymarin (50 mg/kg of b.w.) along with CCl4, completely prevented all the alterations. The mechanism by which silymarin prevented those alterations is not completely known but our results establish the potential use of silymarin in cirrhotic patients to prevent disorders in drug metabolism and disposition frequently found in patients with liver diseases.  相似文献   

6.
Carbon tetrachloride (CCl4) is a volatile organic chemical, which causes tissue damage, especially to the liver and kidney. In experimental animals it has been shown to be carcinogenic. This study was designed to evaluate the effects of exogenous melatonin administration on the CCl4-induced changes of some biochemical parameters in rat blood. Twenty-four male Wistar rats were randomly divided into three equal groups: Control, CCl4 and CCl4 plus melatonin (CCl4+MEL). Rats in CCl4 group were injected subcutaneously with CCl4 0.5 ml/kg in olive oil while rats in CCl4+MEL group were injected with CCl4 (0.5 ml/kg) plus melatonin (25 mg/kg in 10% ethanol) every other day for one month. Control rats were treated with olive oil. Serum urea, creatinine, total protein, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total and conjugated bilirubin, alkaline phosphatase (ALP), gamma-glutamyl transferase (gamma-GT), total iron, and magnesium levels were determined. Serum AST, ALT, total and conjugated bilirubin, ALP, gamma-GT, and total iron levels were significantly higher in CCl4-treated rats than in the controls, while urea, total protein, and albumin levels were significantly lower. Melatonin treatment did not cause a significantly change in serum urea, total protein, and albumin levels. However, the elevations in AST, ALT, total and conjugated bilirubin, ALP, gamma-GT, and total iron levels induced by CCl4 injections were significantly reduced by melatonin. On the other hand, melatonin administration significantly decreased serum magnesium levels. These results indicate that melatonin could be a protective agent against the CCl4 toxicity in rats, most likely through its antioxidant and free radical scavenger effects.  相似文献   

7.
Vinpocetine is a widely used drug for the treatment of cerebrovascular and memory disorders. This study aimed to investigate the effect of vinpocetine on the acute hepatic injury caused in the rat by the administration of CCl4 in vivo. Vinpocetine (2.1, 4.2, 8.4 mg/kg) or silymarin (30 mg/kg) was given once daily orally simultaneously with CCl4 and for 15 days thereafter. Liver damage was assessed by determining serum enzyme activities and hepatic histopathology. Stained sections were subjected to morphometric evaluation using computerized image analyzer. The results showed that vinpocetine administered to CCl4-treated rats decreased the elevated alanine aminotransferase (ALT) by 49.3, 58.1 and 63.6%, aspartate aminotransferase (AST) by 10.5, 22.6 and 27.2% and alkaline phosphatase (ALP) by 52.5, 59.6 and 64.9%, respectively, and in a dose-dependent manner. Meanwhile, silymarin reduced elevated ALT, AST and ALP levels by 53.1, 26.9 and 66%, respectively. Histological examination of liver specimens revealed a marked reduction in liver cell necrosis in vinpocetine and silymarin-treated rats compared with vehicle-treated CCl4-treated rats. Quantitative analysis of the area of damage showed 85.3% reduction in the area of damage after silymarin and 72.2, 78.9 and 82.6% reduction after vinpocetine treatment at 2.1, 4.2, 8.4 mg/kg, respectively. It is concluded that administration of vinpocetine in a model of CCl4-induced liver injury in rats reduced liver damage. The reduction obtained by 4.2 mg/kg of vinpocetine was similar to that obtained by 30 mg/kg silymarin. Therefore, it is suggested that vinpocetine might be a good pharmacological agent in the treatment of liver disease besides its neuroprotective effects.  相似文献   

8.
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.  相似文献   

9.
Ca2+/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca2+. The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.  相似文献   

10.
11.
Background: Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment.Methods: Western blotting, RT-qPCR and immunohistochemistry were used to detect the expression of melatonin membrane receptors (MTNR1A/B) and TNF-α in human NP tissues. In vitro, human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model was constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD.Results: The upregulation of TNF-α and downregulation of melatonin membrane receptors (MTNR1A/B) were observed in degenerative NP tissues. Then we demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α-impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α-induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells.Conclusions: Our results revealed that melatonin can reverse TNF-α-impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD.  相似文献   

12.
Hyper- or hypothyroidism can impair testicular function leading to infertility. The present study was designed to examine the protective effect of date palm pollen (DPP) extract on thyroid disorder-induced testicular dysfunction. Rats were divided into six groups. Group I was normal control. Group II received oral DPP extract (150 mg kg-1), group III (hyperthyroid group) received intraperitoneal injection of L-thyroxine (L-T4, 300μg kg-1; i.p.), group IV received L-T4 plus DPP extract, group V (hypothyroid group) received propylthiouracil (PTU, 10 mg kg-1; i.p.) and group VI received PTU plus DPP extract. All treatments were given every day for 56 days. L-T4 or PTU lowered genital sex organs weight, sperm count and motility, serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone (T), testicular function markers and activities of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD). Moreover, L-T4 or PTU increased estradiol (E2) serum level, testicular oxidative stress, DNA damage and apoptotic markers. Morphometric and histopathologic studies backed these observations. Treatment with DPP extract prevented LT4- or PTU induced changes. In addition, supplementation of DPP extract to normal rats augmented sperm count and motility, serum levels of LH, T and E2 paralleled with increased activities of 3β-HSD and 17β-HSD as well as testicular antioxidant status. These results provide evidence that DPP extract may have potential protective effects on testicular dysfunction induced by altered thyroid hormones.  相似文献   

13.
Peroxisome proliferator-activated receptor-delta (PPAR-δ)-dependent signaling is associated with rapid wound healing in the skin. Here, we investigated the therapeutic effects of PPAR-δ-agonist treatment on cardiac healing in post-myocardial infarction (MI) rats. Animals were assigned to the following groups: sham-operated control group, left anterior descending coronary artery ligation (MI) group, or MI with administration of the PPAR-δ agonist GW610742 group. GW610742 (1 mg/kg) was administrated intraperitoneally after the operation and repeated every 3 days. Echocardiographic data showed no differences between the two groups in terms of cardiac function and remodeling until 4 weeks. However, the degrees of angiogenesis and fibrosis after MI were significantly higher in the GW610742-treated rats than in the untreated MI rats at 1 week following MI, which changes were not different at 2 weeks after MI. Naturally, PPAR-δ expression in infarcted myocardium was highest increased in 3 day after MI and then disappeared in 14 day after MI. GW610742 increased myofibroblast differentiation and transforming growth factor-beta 2 expression in the infarct zone at 7 days after MI. GW610742 also increased bone marrow-derived mesenchymal stem cell (MSC) recruitment in whole myocardium, and increased serum platelet-derived growth factor B, stromal-derived factor-1 alpha, and matrix metallopeptidase 9 levels at day 3 after MI. PPAR-δ agonists treatment have the temporal effect on early fibrosis of infarcted myocardium, which might not sustain the functional and structural beneficial effect.  相似文献   

14.

Background

The effects of atorvastatin on SDF-1α expression under acute myocardial infarction (AMI) are still unclear. Therefore, our present study is to investigate the roles and mechanisms of atorvastatin treatment on SDF-1α expression in rats with AMI.

Methods

Male Sprague–Dawley rats were underwent permanent coronary artery ligation and randomly assigned into four groups as follow: blank control (B), atorvastatin (A), atorvastatin plus L-NAME (A+L-NAME), and atorvastatin plus AMD3100 (A+AMD3100). Rats underwent similar procedure but without ligation were used as group sham operated (S). Atorvastatin (10mg/Kg/d body weight) was administrated by gavage to rats in three atorvastatin treated groups, and L-NAME (40mg/Kg/d body weight) or AMD3100 (5mg/Kg/d body weight) was given to group A+L-NAME or A+AMD3100, respectively.

Results

Comparing with group B, NO production, SDF-1α and CXCR4 expression were significantly up-regulated in three atorvastatin treated groups at the seventh day. However, the increments of SDF-1α and CXCR4 expression in group A+L-NAME were reduced when NO production was inhibited by L-NAME. Anti-inflammatory and anti-apoptotic effects of atorvastatin were offset either by decrease of SDF-1α and CXCR4 expression (by L-NAME) or blockage of SDF-1α coupling with CXCR4 (by AMD3100). Expression of STAT3, a cardioprotective factor mediating SDF-1α/CXCR4 axis induced cardiac protection, was up-regulated most significantly in group A. The effects of atorvastatin therapy on cardiac function were also abrogated either when SDF-1α and CXCR4 expression was diminished or the coupling of SDF-1α with CXCR4 was blocked.

Conclusion

SDF-1α upregulation by atorvastatin in rats with AMI was, at least partially, via the eNOS/NO dependent pathway, and SDF-1α upregulation and SDF-1α coupling with CXCR4 conferred anti-inflammatory and anti-apoptotic effects under AMI setting which we speculated that ultimately contributed to cardiac function improvement.  相似文献   

15.

Objectives

To determine whether or not the antioxidants N-acetylcysteine (NAC) and allopurinol (ALP) confer synergistic cardioprotection against myocardial ischemia/reperfusion (MI/R) injury by stabilizing hypoxia inducible factor 1α (HIF-1α)/heme oxygenase 1 (HO-1) signaling in diabetic myocardium.

Methods

Control or diabetic [streptozotocin (STZ)-induced] Sprague Dawley rats received vehicle or NAC, ALP or their combination for four weeks starting one week after STZ injection. The animals were then subjected to thirty minutes of coronary artery occlusion followed by two hours reperfusion in the absence or presence of the selective HO-1 inhibitor, tin protoporphyrin-IX (SnPP-IX) or the HIF-1α inhibitor 2-Methoxyestradiol (2ME2). Cardiomyocytes exposed to high glucose were subjected to hypoxia/re-oxygenation in the presence or absence of HIF-1α and HO-1 achieved by gene knock-down with related siRNAs.

Results

Myocardial and plasma levels of 15-F2t-isoprostane, an index of oxidative stress, were significantly increased in diabetic rats while cardiac HO-1 protein and activity were reduced; this was accompanied with reduced cardiac protein levels of HIF-1α, and increased post-ischemic myocardial infarct size and cellular injury. NAC and ALP given alone and in particular their combination normalized cardiac levels of HO-1 and HIF-1α protein expression and prevented the increase in 15-F2t-isoprostane, resulting in significantly attenuated post-ischemic myocardial infarction. NAC and ALP also attenuated high glucose-induced post-hypoxic cardiomyocyte death in vitro. However, all the above protective effects of NAC and ALP were cancelled either by inhibition of HO-1 or HIF-1α with SnPP-IX and 2ME2 in vivo or by HO-1 or HIF-1α gene knock-down in vitro.

Conclusion

NAC and ALP confer synergistic cardioprotection in diabetes via restoration of cardiac HIF-1α and HO-1 signaling.  相似文献   

16.
Melatonin is an indolamine, mainly secreted by the pineal gland into the blood of mammalian species. The potential for protective effects of melatonin on carbon tetrachloride (CCl(4))-induced acute liver injury in rats was investigated in this work. CCl(4) exerts its toxic effects by generation of free radicals; it was intragastrically administered to male Wistar rats (4 g kg(-1) body weight) at 20 h before the animals were decapitated. Melatonin (15 mg kg(-1) body weight) was administered intraperitoneally three times: 30 min before and at 2 and 4 h after CCl(4) injection. Rats injected with CCl(4) alone showed significant lipid and hydropic dystrophy of the liver, massive necrosis of hepatocytes, marked increases in free and conjugated bilirubin levels, elevation of hepatic enzymes (alanine aminotransferase and aspartate aminotransferase) in plasma, as well as NO accumulation in liver and in blood. Melatonin administered at a pharmacological dose diminished the toxic effects of CCl(4). Thus it decreased both the structural and functional injury of hepatocytes and clearly exerted hepatoprotective effects. Melatonin administration also reduced CCl(4)-induced NO generation. These findings suggest that the effect of melatonin on CCl(4)-induced acute liver injury depends on the antioxidant action of melatonin.  相似文献   

17.
Reovirus-induced acute myocarditis in mice serves as a model to investigate non-immune-mediated mechanisms of viral myocarditis. We have used primary cardiac myocyte cultures infected with a large panel of myocarditic and nonmyocarditic reassortant reoviruses to identify determinants of viral myocarditic potential. Here, we report that while both myocarditic and nonmyocarditic reoviruses kill cardiac myocytes, viral myocarditic potential correlates with viral spread through cardiac myocyte cultures and with cumulative cell death. To address the role of secreted interferon (IFN), we added anti-IFN-α/β antibody to infected cardiac myocyte cultures. Antibody benefited nonmyocarditic more than myocarditic virus spread (P < 0.001), and this benefit was associated with the reovirus M1 and L2 genes. There was no benefit for a differentiated skeletal muscle cell line culture (C2C12 cells), suggesting cell type specificity. IFN-β induction in reovirus-infected cardiac myocyte cultures correlated with viral myocarditic potential (P = 0.006) and was associated with the reovirus M1, S2, and L2 genes. Sensitivity to the antiviral effects of IFN-α/β added to cardiac myocyte cultures also correlated with viral myocarditic potential (P = 0.004) and was associated with the same reovirus genes. Several reoviruses induced IFN-β levels discordant with their myocarditic phenotypes, and for those tested, sensitivity to IFN-α/β compensated for the anomalous induction levels. Thus, the combination of induction of and sensitivity to IFN-α/β is a determinant of reovirus myocarditic potential. Finally, a nonmyocarditic reovirus induced cardiac lesions in mice depleted of IFN-α/β, demonstrating that IFN-α/β is a determinant of reovirus-induced myocarditis. This provides the first identification of reovirus genes associated with IFN induction and sensitivity and provides the first evidence that IFN-β can be a determinant of viral myocarditis and reovirus disease.  相似文献   

18.
The phosphatase and actin regulator 1 (PHACTR1) locus is a very commonly identified hit in genome-wide association studies investigating coronary artery disease and myocardial infarction (MI). However, the function of PHACTR1 in the heart is still unknown. We characterized the mechanisms regulating Phactr1 expression in the heart, used adenoviral gene delivery to investigate the effects of Phactr1 on cardiac function, and analyzed the relationship between MI associated PHACTR1 allele and cardiac function in human subjects. Phactr1 mRNA and protein levels were markedly reduced (60%, P<0.01 and 90%, P<0.001, respectively) at 1 day after MI in rats. When the direct myocardial effects of Phactr1 were studied, the skeletal α-actin to cardiac α-actin isoform ratio was significantly higher (1.5-fold, P<0.05) at 3 days but 40% lower (P<0.05) at 2 weeks after adenovirus-mediated Phactr1 gene delivery into the anterior wall of the left ventricle. Similarly, the skeletal α-actin to cardiac α-actin ratio was lower at 2 weeks in infarcted hearts overexpressing Phactr1. In cultured neonatal cardiac myocytes, adenovirus-mediated Phactr1 overexpression for 48 hours markedly increased the skeletal α-actin to cardiac α-actin ratio, this being associated with an enhanced DNA binding activity of serum response factor. Phactr1 overexpression exerted no major effects on the expression of other cardiac genes or LV structure and function in normal and infarcted hearts during 2 weeks’ follow-up period. In human subjects, MI associated PHACTR1 allele was not associated significantly with cardiac function (n = 1550). Phactr1 seems to regulate the skeletal to cardiac α-actin isoform ratio.  相似文献   

19.
This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo.  相似文献   

20.
The aim of this study was to examine the protective effects of melatonin against CCl4-induced hepatotoxicity in the rat. Twenty-four male Wistar rats were divided into three groups. Group I was used as a control. Rats in group II were injected every other day with CCl4 for 1 month, whereas rats in group III were injected every other day with CCl4 and melatonin for 1 month. At the end of the experiment, all animals were killed by decapitation and blood samples were obtained. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total and conjugated bilirubin levels were determined. For histopathological evaluation, livers of all rats were removed and processed for light microscopy. All serum biochemical parameters were significantly higher in animals treated with CCl4 than in the controls. When rats injected with CCl4 were treated with melatonin, significantly reduced elevations in serum biochemical parameters were found. In liver sections of the CCl4-injected group, necrosis, fibrosis, mononuclear cell infiltration, haemorrhage, fatty degeneration and formation of regenerative nodules were observed. Additionally, apoptotic figures, microvesicular steatosis and hydropic degeneration in hepatocytes were seen in this group. In contrast, the histopathological changes observed after administration of CCl4 were lost from rats treated with CCl4 and melatonin. Except for mild hydropic degeneration of the hepatocytes, a normal lobular appearance was seen in the livers of this group. The results of our study indicate that melatonin treatment prevents CCl4-induced liver damage in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号