首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TET family of dioxygenases (TET1/2/3) can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and has been shown to be involved in active and passive DNA demethylation. Here, we demonstrate that altering TET dioxygenase levels within physiological range can affect DNA methylation dynamics of HEK293 cells. Overexpression of TET1 increased global 5hmC levels and was accompanied by mild DNA demethylation of promoters, gene bodies and CpG islands. Conversely, the simultaneous knockdown of TET1, TET2, and TET3 led to decreased global 5hmC levels and mild DNA hypermethylation of above-mentioned regions. The methylation changes observed in the overexpression and knockdown studies were mostly non-reciprocal and occurred with different preference depending on endogenous methylation and gene expression levels. Single-nucleotide 5hmC profiling performed on a genome-wide scale revealed that TET1 overexpression induced 5mC oxidation without a distribution bias among genetic elements and structures. Detailed analysis showed that this oxidation was related to endogenous 5hmC levels. In addition, our results support the notion that the effects of TET1 overexpression on gene expression are generally unrelated to its catalytic activity.  相似文献   

2.
Superoxide dismutase (SOD) 3, one of the SOD isozymes, plays a pivotal role in extracellular redox homeostasis. The expression of SOD3 is regulated by epigenetics in human lung cancer A549 cells and human monocytic THP-1 cells; however, the molecular mechanisms governing SOD3 expression have not been elucidated in detail. Ten-eleven translocation (TET), a dioxygenase of 5-methylcytosine (5mC), plays a central role in DNA demethylation processes and induces target gene expression. In the present study, TET1 expression was abundant in U937 cells, but its expression was weakly expressed in A549 and THP-1 cells. These results are consistent with the expression pattern of SOD3 and its DNA methylation status in these cells. Moreover, above relationship was also observed in human breast cancer cells, human prostate cancer cells, and human skin fibroblasts. The overexpression of TET1-catalytic domain (TET1-CD) induced the expression of SOD3 in A549 cells, and this was accompanied by the direct binding of TET1-CD to the SOD3 promoter region. Furthermore, in TET1-CD-transfected A549 cells, the level of 5-hydroxymethylcytosine within that region was significantly increased, whereas the level of 5mC was decreased. The results of the present study demonstrate that TET1 might function as one of the key molecules in SOD3 expression through its 5mC hydroxylation in A549 cells.  相似文献   

3.
During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the base excision repair mechanism leads to replacement of a modified cytosine by an unmodified one. In this study, we analyzed the expression/activity of TET1-3 and screened for the presence of 5mC oxidation products in adult human testis and in germ cell cancers. By analyzing human testis sections, we show that levels of 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine are decreasing as spermatogenesis proceeds, while 5-methylcytosine levels remain constant. These data indicate that during spermatogenesis active DNA demethylation becomes downregulated leading to a conservation of the methylation marks in mature sperm. We demonstrate that all carcinoma in situ and the majority of seminomas are hypomethylated and hypohydroxymethylated compared to non-seminomas. Interestingly, 5-formylcytosine and 5-carboxylcytosine were detectable in all germ cell cancer entities analyzed, but levels did not correlate to the 5-methylcytosine or 5-hydroxymethylcytosine status. A meta-analysis of gene expression data of germ cell cancer tissues and corresponding cell lines demonstrates high expression of TET1 and the DNA glycosylase TDG, suggesting that germ cell cancers utilize the oxidation pathway for active DNA demethylation. During xenograft experiments, where seminoma-like TCam-2 cells transit to an embryonal carcinoma-like state DNMT3B and DNMT3L where strongly upregulated, which correlated to increasing 5-methylcytosine levels. Additionally, 5-hydroxymethylcytosine levels were elevated, demonstrating that de novo methylation and active demethylation accompanies this transition process. Finally, mutations of IDH1 (IDH1 R132) and IDH2 (IDH2 R172) leading to production of the TET inhibiting oncometabolite 2-hydroxyglutarate in germ cell cancer cell lines were not detected.  相似文献   

4.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

5.

Background

Cytosine methylation is a frequent epigenetic modification restricting the activity of gene regulatory elements. Whereas DNA methylation patterns are generally inherited during replication, both embryonic and somatic differentiation processes require the removal of cytosine methylation at specific gene loci to activate lineage-restricted elements. However, the exact mechanisms facilitating the erasure of DNA methylation remain unclear in many cases.

Results

We previously established human post-proliferative monocytes as a model to study active DNA demethylation. We now show, for several previously identified genomic sites, that the loss of DNA methylation during the differentiation of primary, post-proliferative human monocytes into dendritic cells is preceded by the local appearance of 5-hydroxymethylcytosine. Monocytes were found to express the methylcytosine dioxygenase Ten-Eleven Translocation (TET) 2, which is frequently mutated in myeloid malignancies. The siRNA-mediated knockdown of this enzyme in primary monocytes prevented active DNA demethylation, suggesting that TET2 is essential for the proper execution of this process in human monocytes.

Conclusions

The work described here provides definite evidence that TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine initiates targeted, active DNA demethylation in a mature postmitotic myeloid cell type.  相似文献   

6.
7.
8.
9.
Wang B  Li Y  Tan Y  Miao X  Liu XD  Shao C  Yang XH  Turdi S  Ma LJ  Ren J  Cai L 《PloS one》2012,7(3):e33853
BACKGROUND: Cadmium (Cd) is classified as a human carcinogen probably associated with epigenetic changes. DNA methylation is one of epigenetic mechanisms by which cells control gene expression. Therefore, the present study genome-widely screened the methylation-altered genes in the liver of rats previously exposed to low-dose Cd. METHODOLOGY PRINCIPAL FINDINGS: Rats were exposed to Cd at 20 nmol/kg every other day for 4 weeks and gene methylation was analyzed at the 48(th) week with methylated DNA immunoprecipitation-CpG island microarray. Among the 1629 altered genes, there were 675 genes whose promoter CpG islands (CGIs) were hypermethylated, 899 genes whose promoter CGIs were hypomethylated, and 55 genes whose promoter CGIs were mixed with hyper- and hypo-methylation. Caspase-8 gene promoter CGIs and TNF gene promoter CGIs were hypermethylated and hypomethylated, respectively, along with a low apoptosis rate in Cd-treated rat livers. To link the aberrant methylation of caspase-8 and TNF genes to the low apoptosis induced by low-dose Cd, mice were given chronic exposure to low-dose Cd with and without methylation inhibitor (5-aza-2'-deoxyctidene, 5-aza). At the 48(th) week after Cd exposure, livers from Cd-treated mice displayed the increased caspase-8 CGI methylation and decreased caspase-8 protein expression, along with significant increases in cell proliferation and overexpression of TGF-β1 and cytokeratin 8/18 (the latter is a new marker of mouse liver preneoplastic lesions), all which were prevented by 5-aza treatment. CONCLUSION/SIGNIFICANCE: These results suggest that Cd-induced global gene hypermethylation, most likely caspase-8 gene promoter hypermethylation that down-regulated its expression, leading to the decreased hepatic apoptosis and increased preneoplastic lesions.  相似文献   

10.
DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET) family proteins converted 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1) promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.  相似文献   

11.
12.
13.
14.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

15.
TET proteins oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine and thus provide a possible means for active DNA demethylation in mammals. Although their catalytic mechanism is well characterized and the catalytic dioxygenase domain is highly conserved, the function of the regulatory regions (the N terminus and the low-complexity insert between the two parts of the dioxygenase domains) is only poorly understood. Here, we demonstrate that TET proteins are subject to a variety of post-translational modifications that mostly occur at these regulatory regions. We mapped TET modification sites at amino acid resolution and show for the first time that TET1, TET2, and TET3 are highly phosphorylated. The O-linked GlcNAc transferase, which we identified as a strong interactor with all three TET proteins, catalyzes the addition of a GlcNAc group to serine and threonine residues of TET proteins and thereby decreases both the number of phosphorylation sites and site occupancy. Interestingly, the different TET proteins display unique post-translational modification patterns, and some modifications occur in distinct combinations. In summary, our results provide a novel potential mechanism for TET protein regulation based on a dynamic interplay of phosphorylation and O-GlcNAcylation at the N terminus and the low-complexity insert region. Our data suggest strong cross-talk between the modification sites that could allow rapid adaption of TET protein localization, activity, or targeting due to changing environmental conditions as well as in response to external stimuli.  相似文献   

16.
17.
DNA methylation regulates gene expression throughout development and in a wide range of pathologies such as cancer and neurological disorders. Pathways controlling the dynamic levels and targets of methylation are known to be disrupted by chemicals and are therefore of great interest in both prevention and clinical contexts. Benzene and its metabolite hydroquinone have been shown to lead to decreased levels of DNA methylation, although the mechanism is not known. This study employs a cell culture model to investigate the mechanism of hydroquinone-mediated changes in DNA methylation. Exposures that do not affect HEK293 cell viability led to genomic and methylated reporter DNA demethylation. Hydroquinone caused reactivation of a methylated reporter plasmid that was prevented by the addition of N-acetylcysteine. Hydroquinone also caused an increase in Ten Eleven Translocation 1 activity and global levels of 5-hydroxymethylcytosine. 5-Hydroxymethylcytosine was found enriched at LINE-1 prior to a decrease in both 5-hydroxymethylcytosine and 5-methylcytosine. Ten Eleven Translocation-1 knockdown decreased 5-hydroxymethylcytosine formation following hydroquinone exposure as well as the induction of glutamate-cysteine ligase catalytic subunit and 14-3-3σ. Finally, Ten Eleven Translocation 1 knockdown decreased the percentage of cells accumulating in G2+M following hydroquinone exposure, indicating that it may have a role in cell cycle changes in response to toxicants. This work demonstrates that hydroquinone exposure leads to active and functional DNA demethylation in HEK293 cells in a mechanism involving reactive oxygen species and Ten Eleven Translocation 1 5-methylcytosine dioxygenase.  相似文献   

18.
19.
20.
In mammals, a family of TET enzymes producing oxidized forms of 5-methylcytosine (5mC) plays an important role in modulating DNA demethylation dynamics. In contrast, nothing is known about the function of a single TET orthologue present in invertebrates. Here, we show that the honeybee TET (AmTET) catalytic domain has dioxygenase activity and converts 5mC to 5-hydroxymethylcytosine (5hmC) in a HEK293T cell assay. In vivo, the levels of 5hmC are condition-dependent and relatively low, but in testes and ovaries 5hmC is present at approximately 7–10% of the total level of 5mC, which is comparable to that reported for certain mammalian cells types. AmTET is alternatively spliced and highly expressed throughout development and in adult tissues with the highest expression found in adult brains. Our findings reveal an additional level of flexible genomic modifications in the honeybee that may be important for the selection of multiple pathways controlling contrasting phenotypic outcomes in this species. In a broader context, our study extends the current, mammalian-centred attention to TET-driven DNA hydroxymethylation to an easily manageable organism with attractive and unique biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号