首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Cohesin is a multiprotein complex that establishes sister chromatid cohesion from S phase until mitosis or meiosis. In vertebrates, sister chromatid cohesion is dissolved in a stepwise manner: most cohesins are removed from the chromosome arms via a process that requires polo‐like kinase 1 (Plk1), aurora B and Wapl, whereas a minor amount of cohesin, found preferentially at the centromere, is cleaved by separase following its activation by the anaphase‐promoting complex/cyclosome. Here, we report that our budding yeast two‐hybrid assay identified hsSsu72 phosphatase as a Rad21‐binding protein. Additional experiments revealed that Ssu72 directly interacts with Rad21 and SA2 in vitro and in vivo, and associates with sister chromatids in human cells. Interestingly, depletion or mutational inactivation of Ssu72 phosphatase activity caused the premature resolution of sister chromatid arm cohesion, whereas the overexpression of Ssu72 yielded high resistance to this resolution. Interestingly, it appears that Ssu72 regulates the cohesion of chromosome arms but not centromeres, and acts by counteracting the phosphorylation of SA2. Thus, our study provides important new evidence, suggesting that Ssu72 is a novel cohesin‐binding protein capable of regulating cohesion between sister chromatid arms.  相似文献   

9.
The histone H3 variant CENP-A assembles into chromatin exclusively at centromeres. The process of CENP-A chromatin assembly is epigenetically regulated. Fission yeast centromeres are composed of a central kinetochore domain on which CENP-A chromatin is assembled, and this is flanked by heterochromatin. Marker genes are silenced when placed within kinetochore or heterochromatin domains. It is not known if fission yeast CENP-ACnp1 chromatin is confined to specific sequences or whether histone H3 is actively excluded. Here, we show that fission yeast CENP-ACnp1 can assemble on noncentromeric DNA when it is inserted within the central kinetochore domain, suggesting that in fission yeast CENP-ACnp1 chromatin assembly is driven by the context of a sequence rather than the underlying DNA sequence itself. Silencing in the central domain is correlated with the amount of CENP-ACnp1 associated with the marker gene and is also affected by the relative level of histone H3. Our analyses indicate that kinetochore integrity is dependent on maintaining the normal ratio of H3 and H4. Excess H3 competes with CENP-ACnp1 for assembly into central domain chromatin, resulting in less CENP-ACnp1 and other kinetochore proteins at centromeres causing defective kinetochore function, which is manifest as aberrant mitotic chromosome segregation. Alterations in the levels of H3 relative to H4 and CENP-ACnp1 influence the extent of DNA at centromeres that is packaged in CENP-ACnp1 chromatin and the composition of this chromatin. Thus, CENP-ACnp1 chromatin assembly in fission yeast exhibits plasticity with respect to the underlying sequences and is sensitive to the levels of CENP-ACnp1 and other core histones.  相似文献   

10.
11.
Glc7, the yeast protein phosphatase 1, is a component of the cleavage and polyadenylation factor (CPF). Here we show that downregulation of Glc7, or its dissociation from CPF in the absence of CPF subunits Ref2 or Swd2, results in similar snoRNA termination defects. Overexpressing a C-terminal fragment of Sen1, a superfamily I helicase required for snoRNA termination, suppresses the growth and termination defects associated with loss of Swd2 or Ref2, but not Glc7. Suppression by Sen1 requires nuclear localization and direct interaction with Glc7, which can dephosphorylate Sen1 in vitro. The suppressing fragment, and in a similar manner full-length Sen1, copurifies with the snoRNA termination factors Nrd1 and Nab3, suggesting loss of Glc7 from CPF can be compensated by recruiting Glc7 to Nrd1-Nab3 through Sen1. Swd2 is also a subunit of the Set1c histone H3K4 methyltransferase complex and is required for its stability and optimal methyltransferase activity.  相似文献   

12.
13.
Conserved and specific functions of mammalian ssu72   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
16.
17.
A transcription-independent role for TFIIB in gene looping   总被引:2,自引:0,他引:2  
Singh BN  Hampsey M 《Molecular cell》2007,27(5):806-816
  相似文献   

18.
19.
Mis12 is a kinetochore protein essential for equal chromosome segregation and is evolutionarily conserved from yeast to human. In this study, we report the isolation and characterization of suppressors of the mis12 mutant in fission yeast. Our results indicate that Mis12 is negatively regulated by a highly conserved protein phosphatase Ppe1 (scSit4/dmPPV/hPP6) or its bound partner Ekc1 (scSAP), and it is positively regulated by a counteracting kinase Gsk3. Mass spectrometry analysis shows that at least two sites in Mis12 are phosphorylated. This mechanism of suppression occurs at the level of localization recovery of Mis12 to the kinetochore chromatin. Consistently, Mis12 and a subpopulation of Ppe1/Ekc1 were found to behave like non-histone-type chromatin-associating proteins in the chromatin fractionation assay. Mutant analysis of Ppe1 and Ekc1 revealed that they are important for faithful chromosome segregation, as the mutants exhibited unequal chromosome segregation similar to mis12 in the presence of a low concentration of tubulin poison. Ppe1/PP6 directly or indirectly modulates kinetochore chromatin protein Mis12 to ensure progression into normal anaphase.  相似文献   

20.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号