首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria do not only produce less ATP, but they also increase the production of reactive oxygen species (ROS) as by-products of aerobic metabolism in the aging tissues of the human and animals. It is now generally accepted that aging-associated respiratory function decline can result in enhanced production of ROS in mitochondria. Moreover, the activities of free radical-scavenging enzymes are altered in the aging process. The concurrent age-related changes of these two systems result in the elevation of oxidative stress in aging tissues. Within a certain concentration range, ROS may induce stress response of the cells by altering expression of respiratory genes to uphold the energy metabolism to rescue the cell. However, beyond the threshold, ROS may cause a wide spectrum of oxidative damage to various cellular components to result in cell death or elicit apoptosis by induction of mitochondrial membrane permeability transition and release of apoptogenic factors such as cytochrome c. Moreover, oxidative damage and large-scale deletion and duplication of mitochondrial DNA (mtDNA) have been found to increase with age in various tissues of the human. Mitochondria act like a biosensor of oxidative stress and they enable cell to undergo changes in aging and age-related diseases. On the other hand, it has recently been demonstrated that impairment in mitochondrial respiration and oxidative phosphorylation elicits an increase in oxidative stress and causes a host of mtDNA rearrangements and deletions. Here, we review work done in the past few years to support our view that oxidative stress and oxidative damage are a result of concurrent accumulation of mtDNA mutations and defective antioxidant enzymes in human aging.  相似文献   

2.
A major cause of aging and numerous diseases is thought to be cumulative oxidative stress, resulting from the production of reactive oxygen species (ROS) during respiration. Calorie restriction (CR), the most robust intervention to extend life span and ameliorate various diseases in mammals, reduces oxidative stress and damage. However, the underlying mechanism is unknown. Here, we show that the protective effects of CR on oxidative stress and damage are diminished in mice lacking SIRT3, a mitochondrial deacetylase. SIRT3 reduces cellular ROS levels dependent on superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. SIRT3 deacetylates two critical lysine residues on SOD2 and promotes its antioxidative activity. Importantly, the ability of SOD2 to reduce cellular ROS and promote oxidative stress resistance is greatly enhanced by SIRT3. Our studies identify a defense program that CR provokes to reduce oxidative stress and suggest approaches to combat aging and oxidative stress-related diseases.  相似文献   

3.
Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase.  相似文献   

4.
Mitochondria represent both a major source for reactive oxygen species (ROS) production and a target for oxidative macromolecular damage. Increased production of ROS and accumulation of oxidized proteins have been associated with cellular ageing. Protein quality control, also referred as protein maintenance, is very important for the elimination of oxidized proteins through degradation and repair. Chaperone proteins have been implicated in refolding of misfolded proteins while oxidized protein repair is limited to the catalyzed reduction of certain oxidation products of the sulfur-containing amino acids, cysteine and methionine, by specific enzymatic systems. In the mitochondria, oxidation of methionine residues within proteins can be catalytically reversed by the methionine sulfoxide reductases, an ubiquitous enzymatic system that has been implicated both in ageing and protection against oxidative stress. Irreversibly oxidized proteins are targeted to degradation by mitochondrial matrix proteolytic systems such as the Lon protease. The ATP-stimulated Lon protease is believed to play a crucial role in the degradation of oxidized proteins within the mitochondria and age-related declines in the activity and/or expression of this proteolytic system have been previously reported. Age-related impairment of mitochondrial protein maintenance may therefore contribute to the age-associated build-up of oxidized proteins and impairment of mitochondrial redox homeostasis.  相似文献   

5.
Mitochondria are one of the major sources of reactive oxygen species (ROS) in the cell. When exceeding the capacity of antioxidant mechanisms, ROS production may lead to different pathologies, such as ischemia-reperfusion injury, neurodegeneration, anemia and ageing. As a consequence of the endosymbiotic origin of mitochondria, eukaryotic cells have developed different transport mechanisms that coordinate mitochondrial function with other cellular compartments. Four mitochondrial ATP-binding cassette (ABC) transporters have been described to date in mammals: ABCB6, ABCB8, ABCB7 and ABCB10. ABCB10 is located in the inner mitochondrial membrane forming homodimers, with the ATP binding domain facing the mitochondrial matrix. ABCB10 expression is highly induced during erythroid differentiation and its overexpression increases hemoglobin synthesis in erythroid cells. However, ABCB10 is also expressed in nonerythroid tissues, suggesting a role not directly related to hemoglobin synthesis. Recent evidence points toward ABCB10 as an important player in the protection from oxidative stress in mammals. In this regard, ABCB10 is required for normal erythropoiesis and cardiac recovery after ischemia-reperfusion, processes intimately related to mitochondrial ROS generation. Here, we review the current knowledge on mitochondrial ABC transporters and ABCB10 and discuss the potential mechanisms by which ABCB10 and its transport activity may regulate oxidative stress. We discuss ABCB10 as a potential therapeutic target for diseases in which increased mitochondrial ROS production and oxidative stress play a major role.  相似文献   

6.
Inhibition of the mitochondrial electron transport chain (ETC) ultimately limits ATP production and depletes cellular ATP. However, the individual complexes of the ETC in brain mitochondria need to be inhibited by approximately 50% before causing significant depression of ATP synthesis. Moreover, the ETC is the key site for the production of intracellular reactive oxygen species (ROS) and inhibition of one or more of the complexes of the ETC may increase the rate of mitochondrial ROS generation. We asked whether partial inhibition of the ETC, to a degree insufficient to perturb oxidative phosphorylation, might nonetheless induce ROS production. Chronic increase in mitochondrial ROS might then cause oxidative damage to the ETC sufficient to produce prolonged changes in ETC function and so compound the defect. We show that the exposure of astrocytes in culture to low concentrations of nitric oxide (NO) induces an increased rate of O2*- generation that outlasts the presence of NO. No effect was seen on oxygen consumption, lactate or ATP content over the 4-6 h that the cells were exposed to NO. These data suggest that partial ETC inhibition by NO may initially cause oxidative stress rather than ATP depletion, and this may subsequently induce irreversible changes in ETC function providing the basis for a cycle of damage.  相似文献   

7.
Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood–brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.  相似文献   

8.
The oxidative stress hypothesis of aging predicts that a reduction in the generation of mitochondrial reactive oxygen species (ROS) will decrease oxidative damage and extend life span. Increasing mitochondrial proton leak-dependent state 4 respiration by increasing mitochondrial uncoupling is an intervention postulated to decrease mitochondrial ROS production. When human UCP2 (hUCP2) is targeted to the mitochondria of adult fly neurons, we find an increase in state 4 respiration, a decrease in ROS production, a decrease in oxidative damage, heightened resistance to the free radical generator paraquat, and an extension in life span without compromising fertility or physical activity. Our results demonstrate that neuronal-specific expression of hUCP2 in adult flies decreases cellular oxidative damage and is sufficient to extend life span.  相似文献   

9.
Studies on the relationship between oxidative stress and ageing in different vertebrate species and in calorie-restricted animals are reviewed. Endogenous antioxidants inversely correlate with maximum longevity in animal species and experiments modifying levels of these antioxidants can increase survival and mean life span but not maximum life span (MLSP). The available evidence shows that long-living vertebrates consistently have low rates of mitochondrial free radical generation, as well as a low grade of fatty acid unsaturation on cellular membranes, which are two crucial factors determining their ageing rate. Oxidative damage to mitochondrial DNA is also lower in long-living vertebrates than in short-living vertebrates. Calorie restriction, the best described experimental strategy that consistently increases mean and maximum life span, also decreases mitochondrial reactive oxygen species (ROS) generation and oxidative damage to mitochondrial DNA. Recent data indicate that the decrease in mitochondrial ROS generation is due to protein restriction rather than to calorie restriction, and more specifically to dietary methionine restriction. Greater longevity would be partly achieved by a low rate of endogenous oxidative damage generation, but also by a macromolecular composition highly resistant to oxidative modification, as is the case for lipids and proteins.  相似文献   

10.
Mitochondria in exercise-induced oxidative stress   总被引:5,自引:0,他引:5  
In recent years it has been suggested that reactive oxygen species (ROS) are involved in the damage to muscle and other tissues induced by acute exercise. Despite the small availability of direct evidence for ROS production during exercise, there is an abundance of literature providing indirect support that oxidative stress occurs during exercise. The electron transport associated with the mitochondrial respiratory chain is considered the major process leading to ROS production at rest and during exercise. It is widely assumed that during exercise the increased electron flow through the mitochondrial electron transport chain leads to an increased rate of ROS production. On the other hand, results obtained by in vitro experiments indicate that mitochondrial ROS production is lower in state 3 (ADP-stimulated) than in state 4 (basal) respiration. It is possible, however, that factors, such as temperature, that are modified in vivo during intense physical activity induce changes (uncoupling associated with loss of cytochrome oxidase activity) leading to increased ROS production. The mitochondrial respiratory chain could also be a potential source of ROS in tissues, such as liver, kidney and nonworking muscles, that during exercise undergo partial ischemia because of reduced blood supply. Sufficient oxygen is available to interact with the increasingly reduced respiratory chain and enhance the ROS generation. At the cessation of exercise, blood flow to hypoxic tissues resumes leading to their reoxygenation. This mimics the ischemia-reperfusion phenomenon, which is known to cause excessive production of free radicals. Apart from a theoretical rise in ROS, there is little evidence that exercise-induced oxidative stress is due to its increased mitochondrial generation. On the other hand, if mitochondrial production of ROS supplies a remarkable contribution to exercise-induced oxidative stress, mitochondria should be a primary target of oxidative damage. Unfortunately, there are controversial reports concerning the exercise effects on structural and functional characteristics of mitochondria. However, the isolation of mitochondrial fractions by differential centrifugation has shown that the amount of damaged mitochondria, recovered in the lightest fraction, is remarkably increased by long-lasting exercise.  相似文献   

11.
12.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

13.
14.
Reactive oxygen species (ROS) are critical molecules produced as a consequence of aerobic respiration. It is essential for cells to control the production and activity of such molecules in order to protect the genome and regulate cellular processes such as stress response and apoptosis. Mitochondria are the major source of ROS within the cell, and as a result, numerous proteins have evolved to prevent or repair oxidative damage in this organelle. The recently discovered OXR1 gene family represents a set of conserved eukaryotic genes. Previous studies of the yeast OXR1 gene indicate that it functions to protect cells from oxidative damage. In this report, we show that human and yeast OXR1 genes are induced by heat and oxidative stress and that their proteins localize to the mitochondria and function to protect against oxidative damage. We also demonstrate that mitochondrial localization is required for Oxr1 protein to prevent oxidative damage.  相似文献   

15.
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.  相似文献   

16.
Oxygen is toxic to aerobic animals because it is univalently reduced inside cells to oxygen free radicals. Studies dealing with the relationship between oxidative stress and aging in different vertebrate species and in caloric-restricted rodents are discussed in this review. Healthy tissues mainly produce reactive oxygen species (ROS) at mitochondria. These ROS can damage cellular lipids, proteins and, most importantly, DNA. Although antioxidants help to control this oxidative stress in cells in general, they do not decrease the rate of aging, because their concentrations are lower in long- than in short-lived animals and because increasing antioxidant levels does not increase vertebrate maximum longevity. However, long-lived homeothermic vertebrates consistently have lower rates of mitochondrial ROS production and lower levels of steady-state oxidative damage in their mitochondrial DNA than short-lived ones. Caloric-restricted rodents also show lower levels of these two key parameters than controls fed ad libitum. The decrease in mitochondrial ROS generation of the restricted animals has been recently localized at complex I and the mechanism involved is related to the degree of electronic reduction of the complex I ROS generator. Strikingly, the same site and mechanism have been found when comparing a long- with a short-lived animal species. It is suggested that a low rate of mitochondrial ROS generation extends lifespan both in long-lived and in caloric-restricted animals by determining the rate of oxidative attack and accumulation of somatic mutations in mitochondrial DNA.  相似文献   

17.
Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction   总被引:1,自引:0,他引:1  
Oxidative stress is one of the earliest events in Alzheimer's disease (AD). A chemical genetic screen revealed that deregulated cyclin-dependent kinase 5 (Cdk5) may cause oxidative stress by compromising the cellular anti-oxidant defense system. Using novel Cdk5 modulators, we show the mechanism by which Cdk5 can induce oxidative stress in the disease's early stage and cell death in the late stage. Cdk5 dysregulation upon neurotoxic insults results in reactive oxygen species (ROS) accumulation in neuronal cells because of the inactivation of peroxiredoxin I and II. Sole temporal activation of Cdk5 also increases ROS, suggesting its major role in this process. Cdk5 inhibition rescues mitochondrial damage upon neurotoxic insults, thereby revealing Cdk5 as an upstream regulator of mitochondrial dysfunction. As mitochondrial damage results in elevated ROS and Ca(2+) levels, both of which activate Cdk5, we propose that a feedback loop occurs in late stage of AD and leads to cell death (active Cdk5 --> ROS --> excess ROS --> mitochondrial damage --> ROS --> hyperactive Cdk5 --> severe oxidative stress and cell injury --> cell death). Cdk5 inhibition upon neurotoxic insult prevents cell death significantly, supporting this hypothesis. As oxidative stress and mitochondrial dysfunction play pivotal roles in promoting neurodegeneration, Cdk5 could be a viable therapeutic target for AD.  相似文献   

18.
This work was focused on distinguishing the contribution of mitochondrial redox complexesto the production of reactive oxygen species (ROS) during cellular respiration. We were ableto accurately measure, for the first time, the basal production of ROS under uncoupled conditionsby using a very sensitive method, based on the fluorescent probe dichlorodihydrofluoresceindiacetate. The method also enabled the detection of the ROS generated by the oxidation ofthe endogenous substrates in the mitochondrial preparations and could be applied to bothmitochondria and live cells. Contrary to the commonly accepted view that complex III(ubiquinol:cytochrome c reductase) is the major contributor to mitochondrial ROS production, wefound that complex I (NADH-ubiquinone reductase) and complex II (succinate-ubiquinonereductase) are the predominant generators of ROS during prolonged respiration under uncoupledconditions. Complex II, in particular, appears to contribute to the basal production of ROSin cells.  相似文献   

19.
A number of theories have attempted to account for ageing processes in various species. Following the < rate of living > theory of Pearl, Harman suggested fifty years ago that the accumulation of oxidants could explain the alteration of physical and cognitive functions with ageing. Oxygen metabolism leads to reactive species, including free radicals, which tend to oxidize surrounding molecules such as DNA, proteins and lipids. As a consequence various functions of cells and tissues can be altered, leading to DNA instability, protein denaturation and accumulation of lipid byproducts. Oxidative stress is an adaptive process which is triggered upon oxidant accumulation and which comprises the induction of protective and survival functions. Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory. Caloric restriction is among the best models to increase life span in many species. While the relationship between caloric restriction and corrected metabolic rate is controversial, the decrease in ROS production by mitochondria appears to be experimentally supported. The ROS and mitochondrial theories of ageing appear to be compatible. Genetic models of increased life span, particularly those affecting the Foxo pathway, are usually accompanied by an increased resistance to oxidative insult. The free radical theory is not consistent with programmed senescence theories involving the cell division dependent decrease in telomere length ; however, oxidants are known to alter telomere structure. An appealing view of the role of oxidative stress in ageing is the trade-off principle which states that a phenotypic trait can be evolutionarily conserved because of its positive effects on development, growth or fertility, and despite its negative effect on somatic functions and ageing. It is likely that most cellular stresses which comprise adaptive and toxic functions follow such a rule.  相似文献   

20.
Throughout spermatogenesis, mitochondria undergo a morphological and functional differentiation. Mitochondria are involved in the production of reactive oxygen species (ROS), considered one of the mediators of ageing. Particularly, lipid peroxidation is regarded as a major phenomenon by which ROS can impair cellular function. In the present study, we examined the production of superoxide anion, superoxide dismutase activity and the effect of Fe2+/ascorbate induced-lipid peroxidation on the respiratory chain activities of testis mitochondria throughout the process of spermatogenesis and ageing. Mitochondria from rat testes generated superoxide anion, mainly using NADH as substrate, which increased according to age. The activity of SOD is age-dependent and greatly stimulated during the first wave of spermatogenesis, but decreases in adulthood and old age. TBARS concentration was also markedly increased by ageing. The activity of mitochondrial respiratory chain complexes is differentially affected by oxidative stress induced by iron/ascorbate, succinate-dehydrogenase activity being less vulnerable than that of NADH-dehydrogenase and cytochrome c oxidase. The data suggest that ageing is accompanied by reduced activity of SOD, leading to excessive oxidative stress and enhanced lipid peroxidation that compromises the functionality of the electron transport chain. The data support the concept that mitochondrial function is an important determinant in ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号