首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Translational frameshifting is a ubiquitous, if rare, form of alternative decoding in which ribosomes spontaneously shift reading frames during translation elongation. In studying +1 frameshifting in Ty retrotransposons of the yeast S. cerevisiae, we previously showed that unusual P site tRNAs induce frameshifting. The frameshift-inducing tRNAs we show here are near-cognates for the P site codon. Their abnormal decoding induces frameshifting in either of two ways: weak codon-anticodon pairing allows the tRNA to disengage from the mRNA and slip +1, or an unusual codon-anticodon structure interferes with cognate in-frame decoding allowing out-of-frame decoding in the A site. We draw parallels between this mechanism and a proposed mechanism of frameshift suppression by mutant tRNAs.  相似文献   

2.
Programmed translational frameshift sites are sequences in mRNAs that promote frequent stochastic changes in translational reading frame allowing expression of alternative forms of protein products. The EST3 gene of Saccharomyces cerevisiae, encoding a subunit of telomerase, uses a programmed +1 frameshift site in its expression. We show that the site is complex, consisting of a heptameric sequence at which the frameshift occurs and a downstream 27-nucleotide stimulator sequence that increases frameshifting eightfold. The stimulator appears to be modular, composed of at least three separable domains. It increases frameshifting only when ribosomes pause at the frameshift site because of a limiting supply of a cognate aminoacyl-tRNA and not when pausing occurs at a nonsense codon. These data suggest that the EST3 stimulator may modulate access by aminoacyl-tRNAs to the ribosomal A site by interacting with several targets in a ribosome paused during elongation.  相似文献   

3.
4.
Paternally expressed gene 10 (PEG10) is a mammalian gene that is essential for embryonic development in mice. The gene contains two overlapping open reading frames (ORF1 and ORF2) and is derived from a retroelement that acquired a cellular function. It is not known if both reading frames are required for PEG10 function. Synthesis of ORF2 would be possible only if programmed -1 frameshifting occurred during ORF1 translation. In this study the frameshifting activity of PEG10 was analyzed in vivo, and a potential role for ORF2 was investigated. Phylogenetic analysis demonstrated that PEG10 is highly conserved in therian mammals, with all species retaining the elements necessary for frameshifting as well as functional motifs in each ORF. The frameshift site of PEG10 was highly active in cultured cells and produced the ORF1-2 protein. In mice, endogenous ORF1 and an ORF1-2 frameshift protein were detected in the developing placenta and amniotic membrane from 9.5 days post-coitus through to term with a very high frameshift efficiency (>60%). Mutagenesis of the active site motif of a putative protease within ORF2 showed that this enzyme is active and participates in post-translational processing of PEG10 ORF1-2. Both PEG10 proteins were also detected in first trimester human placenta. By contrast, neither protein expression nor frameshifting was detected in adult mouse tissues. These studies imply that the ORF1-2 protein, synthesized utilizing the most efficient -1 frameshift mechanism yet documented in vivo, will have an essential function that is intrinsic to the importance of PEG10 in mammals.  相似文献   

5.
The ribosomal frameshifting signal of the mouse embryonal carcinoma differentiation regulated (Edr) gene represents the sole documented example of programmed -1 frameshifting in mammalian cellular genes [Shigemoto,K., Brennan,J., Walls,E,. Watson,C.J., Stott,D., Rigby,P.W. and Reith,A.D. (2001), Nucleic Acids Res., 29, 4079-4088]. Here, we have employed site-directed mutagenesis and RNA structure probing to characterize the Edr signal. We began by confirming the functionality and magnitude of the signal and the role of a GGGAAAC motif as the slippery sequence. Subsequently, we derived a model of the Edr stimulatory RNA and assessed its similarity to those stimulatory RNAs found at viral frameshift sites. We found that the structure is an RNA pseudoknot possessing features typical of retroviral frameshifter pseudoknots. From these experiments, we conclude that the Edr signal and by inference, the human orthologue PEG10, do not represent a novel 'cellular class' of programmed -1 ribosomal frameshift signal, but rather are similar to viral examples, albeit with some interesting features. The similarity to viral frameshift signals may complicate the design of antiviral therapies that target the frameshift process.  相似文献   

6.
Synthesis of the Gag-Pol protein of the human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshifting when ribosomes translate the unspliced viral messenger RNA. This frameshift occurs at a slippery sequence followed by an RNA structure motif that stimulates frameshifting. This motif is commonly assumed to be a simple stem-loop for HIV-1. In this study, we show that the frameshift stimulatory signal is more complex than believed and consists of a two-stem helix. The upper stem-loop corresponds to the classic stem-loop, and the lower stem is formed by pairing the spacer region following the slippery sequence and preceding this classic stem-loop with a segment downstream of this stem-loop. A three-purine bulge interrupts the two stems. This structure was suggested by enzymatic probing with nuclease V1 of an RNA fragment corresponding to the gag/pol frameshift region of HIV-1. The involvement of the novel lower stem in frameshifting was supported by site-directed mutagenesis. A fragment encompassing the gag/pol frameshift region of HIV-1 was inserted in the beginning of the coding sequence of a reporter gene coding for the firefly luciferase, such that expression of luciferase requires a -1 frameshift. When the reporter was expressed in COS cells, mutations that disrupt the capacity to form the lower stem reduced frameshifting, whereas compensatory changes that allow re-formation of this stem restored the frameshift efficiency near wild-type level. The two-stem structure that we propose for the frameshift stimulatory signal of HIV-1 differs from the RNA triple helix structure recently proposed.  相似文献   

7.
The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting.  相似文献   

8.
Recently we described an unusual programmed +1 frameshift event in yeast retrotransposon Ty3. Frameshifting depends on the presence of peptidyl-tRNA(AlaCGC) on the GCG codon in the ribosomal P site and on a translational pause stimulated by the slowly decoded AGU codon. Frameshifting occurs on the sequence GCG-AGU-U by out-of-frame binding of a valyl-tRNA to GUU without slippage of peptidyl-tRNA(AlaCGC). This mechanism challenges the conventional understanding that frameshift efficiency must correlate with the ability of mRNA-bound tRNA to slip between cognate or near-cognate codons. Though frameshifting does not require slippery tRNAs, it does require special peptidyl-tRNAs. We show that overproducing a second isoacceptor whose anticodon had been changed to CGC eliminated frameshifting; peptidyl-tRNA(AlaCGC) must have a special capacity to induce +1 frameshifting in the adjacent ribosomal A site. In order to identify other special peptidyl-tRNAs, we tested the ability of each of the other 63 codons to replace GCG in the P site. We found no correlation between the ability to stimulate +1 frameshifting and the ability of the cognate tRNA to slip on the mRNA--several codons predicted to slip efficiently do not stimulate frameshifting, while several predicted not to slip do stimulate frameshifting. By inducing a severe translational pause, we identified eight tRNAs capable of inducing measurable +1 frameshifting, only four of which are predicted to slip on the mRNA. We conclude that in Saccharomyces cerevisiae, special peptidyl-tRNAs can induce frameshifting dependent on some characteristic(s) other than the ability to slip on the mRNA.  相似文献   

9.
In many viruses and transposons, expression of some genes requires alternative reading of the genetic code, also called recoding. Such events depend on specific mRNA sequences and can lead to read through of an in-frame stop codon or to +1 or -1 frameshifting. Here, we addressed the issue of conservation of recoding rules between the yeast Saccharomyces cerevisiae and mammalian cells by establishing a versatile vector that can be used to study recoding in both species. We first assessed this vector by analysing the site of +1 frameshift of the Ty1 transposon. Two sequences from higher organisms were then tested in both yeast and mammalian cells: the gag-pol junction of human immunodeficiency virus type 1 (HIV-1) (a site of -1 frameshift), and the stop codon region of the replicase cistron from the tobacco mosaic virus (a site of UAG read through). We show that both sequences direct a high level of recoding in yeast. Furthermore, different mutations of the target sequences have similar effects on recoding in yeast and in mouse cells. Most notably, a strong decrease of frameshifting was observed in the absence of the HIV-1 stem-loop stimulatory signal. Taken together, these data suggest that mechanisms of some recoding events are conserved between lower and higher eukaryotes, thus allowing the use of S. cerevisiae as a model system to study recoding on target sequences from higher organisms.  相似文献   

10.
D Prüfer  E Tacke  J Schmitz  B Kull  A Kaufmann    W Rohde 《The EMBO journal》1992,11(3):1111-1117
The 5.8 kb RNA genome of potato leafroll luteovirus (PLRV) contains two overlapping open reading frames, ORF2a and ORF2b, which are characterized by helicase and RNA polymerase motifs, respectively, and possibly represent the viral replicase. Within the overlap, ORF2b lacks an AUG translational start codon and is therefore presumably translated by -1 ribosomal frameshifting as a transframe protein with ORF2a. This hypothesis was studied by introducing the putative frameshift region into an internal position of the beta-glucuronidase (GUS) gene and testing for the occurrence of frameshifting in vivo by transient expression of GUS activity in potato protoplasts as well as in vitro by translation in the reticulocyte system. Both experimental approaches demonstrate that a -1 frameshift occurs at a frequency of approximately 1%. Site-directed mutagenesis identified the frameshift region and the involvement of the novel heptanucleotide motif UUUAAAU in conjunction with an adjacent stem-loop structure. Part of this stem-loop encodes a basic region in the ORF2b moiety of the transframe protein which was shown by binding experiments with PLRV RNA to represent a nucleic acid-binding domain. These data support a possible biological significance of the frameshift to occur at this position of the large overlap by including the putative RNA template-binding site of the PLRV replicase in the ORF2a/ORF2b transframe protein.  相似文献   

11.
HIV-1 utilises −1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating −1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the ‘intercodon’) contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules—eRF1 protein or a cognate suppressor tRNA—were able to access and decode the intercodon prior to −1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.  相似文献   

12.
In +1 programmed ribosomal frameshifting (PRF), ribosomes skip one nucleotide toward the 3′-end during translation. Most of the genes known to demonstrate +1 PRF have been discovered by chance or by searching homologous genes. Here, a bioinformatic framework called FSscan is developed to perform a systematic search for potential +1 frameshift sites in the Escherichia coli genome. Based on a current state of the art understanding of the mechanism of +1 PRF, FSscan calculates scores for a 16-nt window along a gene sequence according to different effects of the stimulatory signals, and ribosome E-, P- and A-site interactions. FSscan successfully identified the +1 PRF site in prfB and predicted yehP, pepP, nuoE and cheA as +1 frameshift candidates in the E. coli genome. Empirical results demonstrated that potential +1 frameshift sequences identified promoted significant levels of +1 frameshifting in vivo. Mass spectrometry analysis confirmed the presence of the frameshifted proteins expressed from a yehP-egfp fusion construct. FSscan allows a genome-wide and systematic search for +1 frameshift sites in E. coli. The results have implications for bioinformatic identification of novel frameshift proteins, ribosomal frameshifting, coding sequence detection and the application of mass spectrometry on studying frameshift proteins.  相似文献   

13.
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.  相似文献   

14.
The expression of eukaryotic antizyme genes requires +1 translational frameshifting. The frameshift in decoding most vertebrate antizyme mRNAs is stimulated by an RNA pseudoknot 3' of the frameshift site. Although the frameshifting event itself is conserved in a wide variety of organisms from yeast to mammals, until recently no corresponding 3' RNA pseudoknot was known in invertebrate antizyme mRNAs. A pseudoknot, different in structure and origin from its vertebrate counterparts, is now shown to be encoded by the antizyme genes of distantly related invertebrates. Identification of the 3' frameshifting stimulator in intermediate species or other invertebrates remains unresolved.  相似文献   

15.
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal   总被引:2,自引:1,他引:1  
A wide range of RNA viruses use programmed −1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed −1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.  相似文献   

16.
Studies of programmed -1 ribosomal frameshifting (-1 PRF) have been approached over the past two decades by many different laboratories using a diverse array of virus-derived frameshift signals in translational assay systems derived from a variety of sources. Though it is generally acknowledged that both absolute and relative -1 PRF efficiency can vary in an assay system-dependent manner, no methodical study of this phenomenon has been undertaken. To address this issue, a series of slippery site mutants of the SARS-associated coronavirus frameshift signal were systematically assayed in four different eukaryotic translational systems. HIV-1 promoted frameshifting was also compared between Escherichia coli and a human T-cell line expression systems. The results of these analyses highlight different aspects of each system, suggesting in general that (1) differences can be due to the assay systems themselves; (2) phylogenetic differences in ribosome structure can affect frameshifting efficiency; and (3) care must be taken to employ the closest phylogenetic match between a specific -1 PRF signal and the choice of translational assay system.  相似文献   

17.
Antisense-induced ribosomal frameshifting   总被引:1,自引:0,他引:1  
Programmed ribosomal frameshifting provides a mechanism to decode information located in two overlapping reading frames by diverting a proportion of translating ribosomes into a second open reading frame (ORF). The result is the production of two proteins: the product of standard translation from ORF1 and an ORF1–ORF2 fusion protein. Such programmed frameshifting is commonly utilized as a gene expression mechanism in viruses that infect eukaryotic cells and in a subset of cellular genes. RNA secondary structures, consisting of pseudoknots or stem–loops, located downstream of the shift site often act as cis-stimulators of frameshifting. Here, we demonstrate for the first time that antisense oligonucleotides can functionally mimic these RNA structures to induce +1 ribosomal frameshifting when annealed downstream of the frameshift site, UCC UGA. Antisense-induced shifting of the ribosome into the +1 reading frame is highly efficient in both rabbit reticulocyte lysate translation reactions and in cultured mammalian cells. The efficiency of antisense-induced frameshifting at this site is responsive to the sequence context 5′ of the shift site and to polyamine levels.  相似文献   

18.
The −1 ribosomal frameshifting requires the existence of an in cis RNA slippery sequence and is promoted by a downstream stimulator RNA. An atypical RNA pseudoknot with an extra stem formed by complementary sequences within loop 2 of an H-type pseudoknot is characterized in the severe acute respiratory syndrome coronavirus (SARS CoV) genome. This pseudoknot can serve as an efficient stimulator for −1 frameshifting in vitro. Mutational analysis of the extra stem suggests frameshift efficiency can be modulated via manipulation of the secondary structure within the loop 2 of an infectious bronchitis virus-type pseudoknot. More importantly, an upstream RNA sequence separated by a linker 5′ to the slippery site is also identified to be capable of modulating the −1 frameshift efficiency. RNA sequence containing this attenuation element can downregulate −1 frameshifting promoted by an atypical pseudoknot of SARS CoV and two other pseudoknot stimulators. Furthermore, frameshift efficiency can be reduced to half in the presence of the attenuation signal in vivo. Therefore, this in cis RNA attenuator represents a novel negative determinant of general importance for the regulation of −1 frameshift efficiency, and is thus a potential antiviral target.  相似文献   

19.
Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region   总被引:110,自引:0,他引:110  
T Jacks  H D Madhani  F R Masiarz  H E Varmus 《Cell》1988,55(3):447-458
  相似文献   

20.
The synthesis of release factor-2 (RF-2) in bacteria is regulated by a high efficiency +1 frameshifting event at an in-frame UGA stop codon. The stop codon does not specify the termination of synthesis efficiently because of several upstream stimulators for frameshifting. This study focusses on whether the particular context of the stop codon within the frameshift site of the Escherichia coli RF-2 mRNA contributes to the poor efficiency of termination. The context of UGA in this recoding site is rare at natural termination sites in E.coli genes. We have evaluated how the three nucleotides downstream from the stop codon (+4, +5 and +6 positions) in the native UGACUA sequence affect the competitiveness of the termination codon against the frameshifting event. Changing the C in the +4 position and, separately, the A in the +6 position significantly increase the termination signal strength at the frameshift site, whereas the nucleotide in the +5 position had little influence. The efficiency of particular termination signals as a function of the +4 or +6 nucleotides correlates with how often they occur at natural termination sites in E.coli; strong signals occur more frequently and weak signals are less common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号