首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organogenesis》2013,9(1):44-52
Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development.  相似文献   

2.
A non-eukaryotic, metakaryotic cell with large, open mouthed, bell shaped nuclei represents an important stem cell lineage in fetal/juvenile organogenesis in humans and rodents. each human bell shaped nucleus contains the diploid human DNA genome as tested by quantitative Feulgen DNA cytometry and fluorescent in situ hybridization with human pan-telomeric, pan-centromeric and chromosome specific probes. From weeks ∼5–12 of human gestation the bell shaped nuclei are found in organ anlagen enclosed in sarcomeric tubular syncytia. Within syncytia bell shaped nuclear number increases binomially up to 16 or 32 nuclei; clusters of syncytia are regularly dispersed in organ anlagen. Syncytial bell shaped nuclei demonstrate two forms of symmetrical amitoses, facing or “kissing” bells and “stacking” bells resembling separation of two paper cups. Remarkably, DNA increase and nuclear fission occur coordinately. Importantly, syncytial bell shaped nuclei undergo asymmetrical amitoses creating organ specific ensembles of up to eight distinct closed nuclear forms, a characteristic required of a stem cell lineage. Closed nuclei emerging from bell shaped nuclei are eukaryotic as demonstrated by their subsequent increases by extra-syncytial mitoses populating the parenchyma of growing anlagen. From 9–14 weeks syncytia fragment forming single cells with bell shaped nuclei that continue to display both symmetrical and asymmetrical amitoses. These forms persist in the juvenile period and are specifically observed in bases of colonic crypts. Metakaryotic forms are found in organogenesis of humans, rats, mice and the plant Arabidopsis indicating an evolutionary origin prior to the divergence of plants and animals.  相似文献   

3.
4.
Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification.  相似文献   

5.
The extent to which chromosomal domains are reorganized within the nucleus during differentiation is central to our understanding of how cells become committed to specific developmental lineages. Spatio-temporal patterns of DNA replication are a reflection of this organization. Here, we demonstrate that the temporal order and relative duration of these replication patterns during S-phase are similar in murine pluripotent embryonic stem (ES) cells, primary adult myoblasts, and an immortalized fibroblast line. The observed patterns were independent of fixation and denaturation techniques. Importantly, the same patterns were detected when fluorescent nucleotides were introduced into living cells, demonstrating their physiological relevance. These data suggest that heritable gene silencing during commitment to specific cell lineages is not mediated by global changes in the sub-nuclear organization and replication timing of chromosome domains.  相似文献   

6.
邹友龙  李丽莉  楼慧强 《生命科学》2014,(11):1166-1171
遗传物质的稳定传递是生命繁衍的根本。基因组DNA的精确复制和分配是遗传物质传递的基础,也是细胞周期两大最核心的生物学事件。DNA聚合酶作为催化合成DNA双链的酶,是复制过程中最重要的因子之一。尽管对这类酶的研究已有将近60年的历史,但依然是生命科学基础研究的前沿之一。真核生物中已知的DNA聚合酶有十几种,它们不仅参与正常基因组DNA合成过程,也参与DNA损伤情况下多种修复过程。如此众多的具有不同特性的DNA聚合酶在细胞内是如何分工与合作的,在正常细胞传代与环境胁迫等情况下维护基因组稳定性中的关键作用及其分子机制又是什么。更有意思的是,最近的肿瘤细胞比较基因组数据表明,多种DNA聚合酶基因突变与某些肿瘤和遗传疾病相关,从而为这些疾病致病机理研究与诊治提供了新的思路和方法。对上述DNA聚合酶相关核心问题的最新研究进展进行了综述。  相似文献   

7.
Inhibitor of growth 2 (ING2) is a candidate tumour suppressor gene the expression of which is frequently lost in tumours. Here, we identified a new function for ING2 in the control of DNA replication and in the maintenance of genome stability. Global replication rate was markedly reduced during normal S‐phase in small interfering RNA (siRNA) ING2 cells, as seen in a DNA fibre spreading experiment. Accordingly, we found that ING2 interacts with proliferating cell nuclear antigen and regulates its amount to the chromatin fraction, allowing normal replication progression and normal cell proliferation. Deregulation of DNA replication has been previously associated with genome instability. Hence, a high proportion of siRNA ING2 cells presented endoreduplication of their genome as well as an increased frequency of sister chromatid exchange. Thus, we propose for the first time that ING2 might function as a tumour suppressor gene by directly maintaining DNA integrity.  相似文献   

8.
应用电打孔的方法将化学合成的NRSE/RE-1d sRNA转染小鼠胚胎干细胞,在去除LIF的条件下,直接接种培养,观察其分化情况,并对分化结果进行相关检测.结果显示分化细胞呈明显的神经样改变,免疫荧光显示NSE阳性率为(82.3±8.1)%.说明通过转染NRSE/RE-1d sRNA能有效地诱导小鼠胚胎干细胞向神经元细胞分化.  相似文献   

9.
DNA2 is a nuclease/helicase that is involved in Okazaki fragment maturation, replication fork processing, and end resection of DNA double‐strand breaks. Similar such helicase activity for resolving secondary structures and structure‐specific nuclease activity are needed during DNA replication to process the chromosome‐specific higher order repeat units present in the centromeres of human chromosomes. Here, we show that DNA2 binds preferentially to centromeric DNA. The nuclease and helicase activities of DNA2 are both essential for resolution of DNA structural obstacles to facilitate DNA replication fork movement. Loss of DNA2‐mediated clean‐up mechanisms impairs centromeric DNA replication and CENP‐A deposition, leading to activation of the ATR DNA damage checkpoints at centromeric DNA regions and late‐S/G2 cell cycle arrest. Cells that escape arrest show impaired metaphase plate formation and abnormal chromosomal segregation. Furthermore, the DNA2 inhibitor C5 mimics DNA2 knockout and synergistically kills cancer cells when combined with an ATR inhibitor. These findings provide mechanistic insights into how DNA2 supports replication of centromeric DNA and give further insights into new therapeutic strategies.  相似文献   

10.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

11.
We have identified and purified a multiprotein form of DNA polymerase from the murine mammary carcinoma cell line (FM3A) using a series of centrifugation, polyethylene glycol precipitation, and ion-exchange chromatography steps. Proteins and enzymatic activities associated with this mouse cell multiprotein form of DNA polymerase include the DNA polymerases α and δ, DNA primase, proliferating cell nuclear antigen (PCNA), DNA ligase I, DNA helicase, and DNA topoisomerases I and II. The sedimentation coefficient of the multiprotein form of DNA polymerase is 17S, as determined by sucrose density gradient analysis. The integrity of the murine cell multiprotein form of DNA polymerase is maintained after treatment with detergents, salt, RNase, DNase, and after chromatography on DE52-cellulose, suggesting that the association of the proteins with one another is independent of nonspecific interaction with other cellular macromolecular components. Most importantly, we have demonstrated that this complex of proteins is fully competent to replicate polyomavirus DNA in vitro. This result implies that all of the cellular activities required for large T-antigen dependent in vitro polyomavirus DNA synthesis are present within the isolated 17S multiprotein form of the mouse cell DNA replication activities. A model is proposed to represent the mammalian Multiprotein DNA Replication Complex (MRC) based on the fractionation and chromatographic profiles of the individual proteins found to co-purify with the complex.  相似文献   

12.
Gu P  Min JN  Wang Y  Huang C  Peng T  Chai W  Chang S 《The EMBO journal》2012,31(10):2309-2321
The proper maintenance of telomeres is essential for genome stability. Mammalian telomere maintenance is governed by a number of telomere binding proteins, including the newly identified CTC1-STN1-TEN1 (CST) complex. However, the in vivo functions of mammalian CST remain unclear. To address this question, we conditionally deleted CTC1 from mice. We report here that CTC1 null mice experience rapid onset of global cellular proliferative defects and die prematurely from complete bone marrow failure due to the activation of an ATR-dependent G2/M checkpoint. Acute deletion of CTC1 does not result in telomere deprotection, suggesting that mammalian CST is not involved in capping telomeres. Rather, CTC1 facilitates telomere replication by promoting efficient restart of stalled replication forks. CTC1 deletion results in increased loss of leading C-strand telomeres, catastrophic telomere loss and accumulation of excessive ss telomere DNA. Our data demonstrate an essential role for CTC1 in promoting efficient replication and length maintenance of telomeres.  相似文献   

13.
14.
Suemori H 《Human cell》2006,19(2):65-70
Embryonic stem (ES) cell lines, which are derived from the inner cell mass of blastocysts, proliferate indefinitely in vitro, retaining their potency to differentiate into various cell types derived from all of the three embryonic germ layers: the ectoderm, mesoderm and endoderm. Establishment of human ES cell lines in 1998 has indicated the great potential of ES cells for applications in medical research and other purposes such as cell transplantation therapy. Careful assessment of safety and effectiveness using proper animal models is required before such therapies can be attempted on human patients. Monkey ES cell lines provide valuable models for such research.  相似文献   

15.
《Epigenetics》2013,8(2):257-267
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.  相似文献   

16.
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.  相似文献   

17.
Understanding the mechanisms that lead to replication fork blocks (RFB) and the means to bypass them is important given the threat that they represent for genome stability if inappropriately handled. Here, to study this issue in mammals, we use integrated arrays of the LacO and/or TetO as a tractable system to follow in time a process in an individual cell and at a single locus. Importantly, we show that induction of the binding by LacI and TetR proteins, and not the presence of the repeats, is key to form the RFB. We find that the binding of the proteins to the arrays during replication causes a prolonged persistence of replication foci at the site. This, in turn, induces a local DNA damage repair (DDR) response, with the recruitment of proteins involved in double-strand break (DSB) repair such as TOPBP1 and 53BP1, and the phosphorylation of H2AX. Furthermore, the appearance of micronuclei and DNA bridges after mitosis is consistent with an incomplete replication. We discuss how the many DNA binding proteins encountered during replication can be dealt with and the consequences of incomplete replication. Future studies exploiting this type of system should help analyze how an RFB, along with bypass mechanisms, are controlled in order to maintain genome integrity.  相似文献   

18.
The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.  相似文献   

19.
Fanconi Anemia (FA) is a cancer predisposition syndrome and the factors defective in FA are involved in DNA replication, DNA damage repair and tumor suppression. Here, we show that FANCD2 is critical for genome stability maintenance in response to high-linear energy transfer (LET) radiation. We found that FANCD2 is monoubiquitinated and recruited to the sites of clustered DNA double-stranded breaks (DSBs) specifically in S/G2 cells after high-LET radiation. Further, FANCD2 facilitated the repair of clustered DSBs in S/G2 cells and proper progression of S-phase. Furthermore, lack of FANCD2 led to a reduced rate of replication fork progression and elevated levels of both replication fork stalling and new origin firing in response to high-LET radiation. Mechanistically, FANCD2 is required for correct recruitment of RPA2 and Rad51 to the sites of clustered DSBs and that is critical for proper processing of clustered DSBs. Significantly, FANCD2-decifient cells exhibited defective chromosome segregation, elevated levels of chromosomal aberrations, and anchorage-independent growth in response to high-LET radiation. These findings establish FANCD2 as a key factor in genome stability maintenance in response to high-LET radiation and as a promising target to improve cancer therapy.  相似文献   

20.
《Cell reports》2023,42(3):112161
  1. Download : Download high-res image (134KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号