首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA). We previously generated murine IgG3 monoclonal antibodies (mAbs) to γdPGA that were protective in a murine model of pulmonary anthrax. IgG3 antibodies are characteristic of the murine response to polysaccharide antigens. The goal of the present study was to produce subclass switch variants of the γdPGA mAbs (IgG3→IgG1→IgG2b→IgG2a) and assess the contribution of subclass to antibody affinity and protection. Subclass switch antibodies had identical variable regions but differed in their heavy chains. The results showed that a switch from the protective IgG3 to IgG1, IgG2b or IgG2a was accompanied by i) a loss of protective activity ii) a change in mAb binding to the capsular matrix, and iii) a loss of affinity. These results identify a role for the heavy chain constant region in mAb binding. Hybrid mAbs were constructed in which the CH1, CH2 or CH3 heavy chain constant domains from a non-protective, low binding IgG2b mAb were swapped into the protective IgG3 mAb. The IgG3 mAb that contained the CH1 domain from IgG2b showed no loss of affinity or protection. In contrast, swapping the CH2 or CH3 domains from IgG2b into IgG3 produced a reduction in affinity and a loss of protection. These studies identify a role for the constant region of IgG heavy chains in affinity and protection against an encapsulated bacterial pathogen.  相似文献   

2.
1. A number of disaccharides and oligosaccharides have been isolated from the products of mild acid hydrolysis of the specific substance from Lactobacillus casei, serological group C. 2. The major disaccharide is O-β-d-glucopyranosyl-(1→3)-N-acetyl- d-galactosamine (B4) and evidence is presented for the structure of a tetrasaccharide composed of O-β-d-glucopyranosyl-(1→6)-d-galactose (B1) joined through its reducing end group to B4. 3. Disaccharide B1 is also a component of a trisaccharide O-β-d-glucopyranosyl-(1→6)-O-β- d-galactopyranosyl-(1→6)-N-acetyl-d-glucosamine (A7). 4. A number of other oligosaccharides have been shown to be related structurally. 5. The ability of certain of the oligosaccharides to inhibit the precipitin reaction has been studied. The disaccharide B1 is more effective as an inhibitor than gentiobiose and the trisaccharide A7 is considerably more effective than B1. 6. These results have been compared with those obtained previously for the composition of the cell wall.  相似文献   

3.
d-Galactan I is a polysaccharide with the disaccharide repeat unit structure [→3-β-d-Galf-(1→3)-α-d-Galp-(1→]. This glycan represents the lipopolysaccharide O antigen found in many Gram-negative bacteria, including several Klebsiella pneumoniae O serotypes. The polysaccharide is synthesized in the cytoplasm prior to its export via an ATP-binding cassette transporter. Sequence analysis predicts three galactosyltransferases in the d-galactan I genetic locus. They are WbbO (belonging to glycosyltransferase (GT) family 4), WbbM (GT-family 8), and WbbN (GT-family 2). The WbbO and WbbM proteins are each predicted to contain two domains, with the GT modules located toward their C termini. The N-terminal domains of WbbO and WbbM exhibit no similarity to proteins with known function. In vivo complementation assays suggest that all three glycosyltransferases are required for d-galactan I biosynthesis. Using a bacterial two-hybrid system and confirmatory co-purification strategies, evidence is provided for protein-protein interactions among the glycosyltransferases, creating a membrane-located enzyme complex dedicated to d-galactan I biosynthesis.  相似文献   

4.
The ability of an inulosucrase (IS) from Lactobacillus gasseri DSM 20604 to synthesize fructooligosaccharides (FOS) and maltosylfructosides (MFOS) in the presence of sucrose and sucrose-maltose mixtures was investigated after optimization of synthesis conditions, including enzyme concentration, temperature, pH, and reaction time. The maximum formation of FOS, which consist of β-2,1-linked fructose to sucrose, was 45% (in weight with respect to the initial amount of sucrose) and was obtained after 24 h of reaction at 55°C in the presence of sucrose (300 g liter−1) and 1.6 U ml−1 of IS–25 mM sodium acetate buffer–1 mM CaCl2 (pH 5.2). The production of MFOS was also studied as a function of the initial ratios of sucrose to maltose (10:50, 20:40, 30:30, and 40:20, expressed in g 100 ml−1). The highest yield in total MFOS was attained after 24 to 32 h of reaction time and ranged from 13% (10:50 sucrose/maltose) to 52% (30:30 sucrose/maltose) in weight with respect to the initial amount of maltose. Nuclear magnetic resonance (NMR) structural characterization indicated that IS from L. gasseri specifically transferred fructose moieties of sucrose to either C-1 of the reducing end or C-6 of the nonreducing end of maltose. Thus, the trisaccharide erlose [α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→2)-β-d-fructofuranoside] was the main synthesized MFOS followed by neo-erlose [β-d-fructofuranosyl-(2→6)-α-d-glucopyranosyl-(1→4)-α-d-glucopyranose]. The formation of MFOS with a higher degree of polymerization was also demonstrated by the transfer of additional fructose residues to C-1 of either the β-2,1-linked fructose or the β-2,6-linked fructose to maltose, revealing the capacity of MFOS to serve as acceptors.  相似文献   

5.
The Escherichia coli O9a and O8 O-antigen serotypes represent model systems for the ABC transporter-dependent synthesis of bacterial polysaccharides. The O9a and O8 antigens are linear mannose homopolymers containing conserved reducing termini (the primer-adaptor), a serotype-specific repeat unit domain, and a terminator. Synthesis of these glycans occurs on the polyisoprenoid lipid-linked primer, undecaprenol pyrophosphoryl-GlcpNAc, by two conserved mannosyltransferases, WbdC and WbdB, and a serotype-specific mannosyltransferase, WbdA. The glycan structure and pattern of conservation in the O9a and O8 mannosyltransferases are not consistent with the existing model of O9a biosynthesis. Here we establish a revised pathway using a combination of in vivo (mutant complementation) experiments and in vitro strategies with purified enzymes and synthetic acceptors. WbdC and WbdB synthesize the adaptor region, where they transfer one and two α-(1→3)-linked mannose residues, respectively. The WbdA enzymes are solely responsible for forming the repeat unit domains of these O-antigens. WbdAO9a has two predicted active sites and polymerizes a tetrasaccharide repeat unit containing two α-(1→3)- and two α-(1→2)-linked mannopyranose residues. In contrast, WbdAO8 polymerizes trisaccharide repeat units containing single α-(1→3)-, α-(1→2)-, and β-(1→2)-mannopyranoses. These studies illustrate assembly systems exploiting several mannosyltransferases with flexible active sites, arranged in single- and multiple-domain formats.  相似文献   

6.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

7.
Polyclonal antibodies raised against barley (1→3,1→4)-β-d-glucanase, α-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley. In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding α-amylase or (1→3,1→4)-β-d-glucanase, while in the aleurone α-amylase and (1→3,1→4)-β-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1→3,1→4)-β-d-glucanase, α-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation products were identical for each enzyme.  相似文献   

8.
An endoglucanase was isolated from cell walls of Zea mays seedlings. Characterization of the hydrolytic activity of this glucanase using model substrates indicated a high specificity for molecules containing intramolecular (1→3),(1→4)-β-d-glucosyl sequences. Substrates with (1→4)-β-glucosyl linkages, such as carboxymethylcellulose and xyloglucan were, degraded to a limited extent by the enzyme, whereas (1→3)-β-glucans such as laminarin were not hydrolyzed. When (1→3),(1→4)-β-d-glucan from Avena endosperm was used as a model substrate a rapid decrease in vicosity was observed concomitant with the formation of a glucosyl polymer (molecular weight of 1-1.5 × 104). Activity against a water soluble (1→3),(1→4)-β-d-glucan extracted from Zea seedling cell walls revealed the same depolymerization pattern. The size of the limit products would indicate that a unique recognition site exists at regular intervals within the (1→3),(1→4)-β-d-glucan molecule. Unique oligosaccharides isolated from the Zea (1→3),(1→4)-β-d-glucan that contained blocks of (1→4) linkages and/or more than a single contiguous (1→3) linkage were hydrolyzed by the endoglucanase. The unique regions of the (1→3),(1→4)-β-d-glucan may be the recognition-hydrolytic site of the Zea endoglucanase.  相似文献   

9.
Classical arabinogalactan proteins partially defined by type II O-Hyp-linked arabinogalactans (Hyp-AGs) are structural components of the plant extracellular matrix. Recently we described the structure of a small Hyp-AG putatively based on repetitive trigalactosyl subunits and suggested that AGs are less complex and varied than generally supposed. Here we describe three additional AGs with similar subunits. The Hyp-AGs were isolated from two different arabinogalactan protein fusion glycoproteins expressed in tobacco cells; that is, a 22-residue Hyp-AG and a 20-residue Hyp-AG, both isolated from interferon α2b-(Ser-Hyp)20, and a 14-residue Hyp-AG isolated from (Ala-Hyp)51-green fluorescent protein. We used NMR spectroscopy to establish the molecular structure of these Hyp-AGs, which share common features: (i) a galactan main chain composed of two 1→3 β-linked trigalactosyl blocks linked by a β-1→6 bond; (ii) bifurcated side chains with Ara, Rha, GlcUA, and a Gal 6-linked to Gal-1 and Gal-2 of the main-chain trigalactosyl repeats; (iii) a common side chain structure composed of up to six residues, the largest consisting of an α-l-Araf-(1→5)-α-l-Araf-(1→3)-α-l-Araf-(1→3- unit and an α-l-Rhap-(1→4)-β-d-GlcUAp-(1→6)-unit, both linked to Gal. The conformational ensemble obtained by using nuclear Overhauser effect data in structure calculations revealed a galactan main chain with a reverse turn involving the β-1→6 link between the trigalactosyl blocks, yielding a moderately compact structure stabilized by H-bonds.  相似文献   

10.
O antigen (O polysaccharide) is an important and highly variable cell component present on the surface of cells which defines the serospecificity of Gram-negative bacteria. Most O antigens of Shigella flexneri, a cause of shigellosis, share a backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various substituents, giving rise to 19 serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, two new O-antigen modifications, namely, O-acetylation at position 3 or 4 of RhaIII and position 6 of GlcNAc, have been identified in several S. flexneri serotypes. In this work, the genetic basis for the 3/4-O-acetylation on RhaIII was elucidated. Bioinformatic analysis of the genome of S. flexneri serotype 2a strain Sf301, which carries 3/4-O-acetylation on RhaIII, revealed an O-acyltransferase gene designated oacB. Genetic studies combined with O-antigen structure analysis demonstrated that this gene is responsible for the 3/4-O-acetylation in serotypes 1a, 1b, 2a, 5a, and Y but not serotype 6, which has a different O-antigen backbone structure. The oacB gene is carried by a transposon-like structure located in the proA-adrA region on the chromosome, which represents a novel mechanism of mobilization of O-antigen modification factors in S. flexneri. These findings enhance our knowledge of S. flexneri O-antigen modifications and shed light on the origin of new O-antigen variants.  相似文献   

11.
Xylan-debranching enzymes facilitate the complete hydrolysis of xylan and can be used to alter xylan chemistry. Here, the family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus (SthAbf62A) was shown to have a half-life of 60 min at 60°C and the ability to cleave α-1,3 l-arabinofuranose (l-Araf) from singly substituted xylopyranosyl (Xylp) backbone residues in wheat arabinoxylan; low levels of activity on arabinan as well as 4-nitrophenyl α-l-arabinofuranoside were also detected. After selective removal of α-1,3 l-Araf substituents from disubstituted Xylp residues present in wheat arabinoxylan, SthAbf62A could also cleave the remaining α-1,2 l-Araf substituents, confirming the ability of SthAbf62A to remove α-l-Araf residues that are (1→2) and (1→3) linked to monosubstituted β-d-Xylp sugars. Three-dimensional structures of SthAbf62A and its complex with xylotetraose and l-arabinose confirmed a five-bladed β-propeller fold and revealed a molecular Velcro in blade V between the β1 and β21 strands, a disulfide bond between Cys27 and Cys297, and a calcium ion coordinated in the central channel of the fold. The enzyme-arabinose complex structure further revealed a narrow and seemingly rigid l-arabinose binding pocket situated at the center of one side of the β propeller, which stabilized the arabinofuranosyl substituent through several hydrogen-bonding and hydrophobic interactions. The predicted catalytic amino acids were oriented toward this binding pocket, and the catalytic essentiality of Asp53 and Glu213 was confirmed by site-specific mutagenesis. Complex structures with xylotetraose revealed a shallow cleft for xylan backbone binding that is open at both ends and comprises multiple binding subsites above and flanking the l-arabinose binding pocket.  相似文献   

12.
Shigella flexneri O-antigen is an important and highly variable cell component presented on the outer leaflet of the outer membrane. Most Shigella flexneri bacteria share an O-antigen backbone composed of →2)-α-l-RhapIII-(1→2)-α-l-RhapII-(1→3)-α-l-RhapI-(1→3)-β-d-GlcpNAc-(1→ repeats, which can be modified by adding various chemical groups to different sugars, giving rise to diverse O-antigen structures and, correspondingly, to various serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on RhaI or/and RhaIII, and phosphorylation with phosphoethanolamine on RhaII or/and RhaIII. Recently, a new O-antigen modification, namely, O-acetylation at position 6 of N-acetylglucosamine (GlcNAc), has been identified in S. flexneri serotypes 2a, 3a, Y, and Yv. In this study, the genetic basis of the 6-O-acetylation of GlcNAc in S. flexneri was elucidated. An O-acyltransferase gene designated oacD was found to be responsible for this modification. The oacD gene is carried on serotype-converting bacteriophage SfII, which is integrated into the host chromosome by lysogeny to form a prophage responsible for the evolvement of serotype 2 of S. flexneri. The OacD-mediated 6-O-acetylation also occurs in some other S. flexneri serotypes that carry a cryptic SfII prophage with a dysfunctional gtr locus for type II glucosylation. The 6-O-acetylation on GlcNAc confers to the host a novel O-antigen epitope, provisionally named O-factor 10. These findings enhance our understanding of the mechanisms of the O-antigen variation and enable further studies to understand the contribution of the O-acetylation to the antigenicity and pathogenicity of S. flexneri.  相似文献   

13.
The composition of the cell wall of Fusicoccum amygdali   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The cell wall of Fusicoccum amygdali consisted of polysaccharides (85%), protein (4–6%), lipid (5%) and phosphorus (0.1%). 2. The main carbohydrate constituent was d-glucose; smaller amounts of d-glucosamine, d-galactose, d-mannose, l-rhamnose, xylose and arabinose were also identified, and 16 common amino acids were detected. 3. Chitin, which accounted for most of the cell-wall glucosamine, was isolated in an undegraded form by an enzymic method. Chitosan was not detected, but traces of glucosamine were found in alkali-soluble and water-soluble fractions. 4. Cell walls were stained dark blue by iodine and were attacked by α-amylase, with liberation of glucose, maltose and maltotriose, indicating the existence of chains of α-(1→4)-linked glucopyranose residues. 5. Glucose and gentiobiose were liberated from cell walls by the action of an exo-β-(1→3)-glucanase, giving evidence for both β-(1→3)- and β-(1→6)-glucopyranose linkages. 6. Incubation of cell walls with Helix pomatia digestive enzymes released glucose, N-acetyl-d-glucosamine and a non-diffusible fraction, containing most of the cell-wall galactose, mannose and rhamnose. Part of this fraction was released by incubating cell walls with Pronase; acid hydrolysis yielded galactose 6-phosphate and small amounts of mannose 6-phosphate and glucose 6-phosphate as well as other materials. Extracellular polysaccharides of a similar nature were isolated and may be formed by the action of lytic enzymes on the cell wall. 7. About 30% of the cell wall was resistant to the action of the H. pomatia digestive enzymes; the resistant fraction was shown to be a predominantly α-(1→3)-glucan. 8. Fractionation of the cell-wall complex with 1m-sodium hydroxide gave three principal glucan fractions: fraction BB had [α]D +236° (in 1m-sodium hydroxide) and showed two components on sedimentation analysis; fraction AA2 had [α]D −71° (in 1m-sodium hydroxide) and contained predominantly β-linkages; fraction AA1 had [α]D +40° (in 1m-sodium hydroxide) and may contain both α- and β-linkages.  相似文献   

14.
Enterobacterial common antigen (ECA) is expressed by Gram-negative bacteria belonging to Enterobacteriaceae, including emerging drug-resistant pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus spp. Recent studies have indicated the importance of ECA for cell envelope integrity, flagellum expression, and resistance of enteric bacteria to acetic acid and bile salts. ECA, a heteropolysaccharide built from the trisaccharide repeating unit, →3)-α-d-Fucp4NAc-(1→4)-β-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, occurs as a cyclic form (ECACYC), a phosphatidylglycerol (PG)-linked form (ECAPG), and an endotoxin/lipopolysaccharide (LPS)-associated form (ECALPS). Since the discovery of ECA in 1962, the structures of ECAPG and ECACYC have been completely elucidated. However, no direct evidence has been presented to support a covalent linkage between ECA and LPS; only serological indications of co-association have been reported. This is paradoxical, given that ECA was first identified based on the capacity of immunogenic ECALPS to elicit antibodies cross-reactive with enterobacteria. Using a simple isolation protocol supported by serological tracking of ECA epitopes and NMR spectroscopy and mass spectrometry, we have succeeded in the first detection, isolation, and complete structural analysis of poly- and oligosaccharides of Shigella sonnei phase II ECALPS. ECALPS consists of the core oligosaccharide substituted with one to four repeating units of ECA at the position occupied by the O-antigen in the case of smooth S. sonnei phase I. These data represent the first structural evidence for the existence of ECALPS in the half-century since it was first discovered and provide insights that could prove helpful in further structural analyses and screening of ECALPS among Enterobacteriaceae species.  相似文献   

15.
The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-d-GalpNAc-(1→5)-Rbo-1-P and →6) β-d-Glcp-(1→3) [α-d-Glcp-(1→4)]-β-d-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system.  相似文献   

16.
Particulate enzyme preparations from Phaseolus aureus hypocotyls catalyze the formation of an alkali insoluble β, 1 → 4 linked [14C]-glucan using UDP-α-d [14C]-glucose as substrate. Particulate enzymes prepared from root tissue also catalyzed the production of β, 1 → 4 glucan. UDP-β-d-[14C]-glucose would not serve as a substrate for these enzymes. The presence or absence of β, 1 → 4 glucan synthetase activity was independent of tissue source, substrate concentration, or homogenization method.  相似文献   

17.
1. Methylation analysis of potato (Solanum tuberosum) lectin and thorn-apple (Datura stramonium) lectin confirmed previous conclusions that both glycoproteins contained high proportions of l-arabinofuranosides and lesser amounts of d-galactopyranosides. The arabinofuranosides are present in both lectins as short unbranched chains containing 1→2- and 1→3-linkages, which are known to be linked to hydroxyproline. Galactopyranosides are present as monosaccharides, which are known to be attached to serine, in potato lectin and as both the monosaccharide and the 1→3-linked disaccharide in Datura lectin. 2. Alkaline digestion of potato lectin and subsequent separation of the components by gel filtration led to the isolation of four fractions corresponding to the mono-, di-, tri- and tetra-arabinosides of hydroxyproline. The latter two fractions accounted for over 70% of the total hydroxyproline. 3. Methylation analysis was used to show that the triarabinoside contained only 1→2-linkages between sugars, but that the tetra-arabinoside contained both 1→2- and 1→3-linkages. Direct-insertion mass spectrometry of these compounds using electron impact and chemical ionization, in a comparison with other known structural patterns, was used to determine the sequences of the sugars, which were Araƒ1→2Araƒ1→2Araƒ1→Hyp and Araƒ1→3Araƒ1→2Araƒ1→2Araƒ 1→Hyp. 4. On the basis of optical rotation it had previously been suggested [Allen, Desai, Neuberger & Creeth (1978) Biochem. J. 171, 665–674] that all the arabinose of potato lectin was present as the β-l-furanoside. However, measurement of the optical rotations of the hydroxyprolyl arabinosides showed that whereas the diarabinoside had a molar rotation ([m]) value close to that predicted, the triarabinoside was more dextrorotatory and the tetra-arabinoside was less dextrorotatory than expected. Possible explanations for these findings are that, although the di- and tri-arabinosides contain exclusively β-arabinofuranosides, in the tri-arabinoside, interactions between pentose units lead to an enhanced positive rotation. The tetra-arabinoside, however, is proposed to contain a single α-arabinofuranoside residue, which is responsible for the lower than expected positive rotation. The observed rotation of the tetra-arabinoside was found to be close to the theoretical value predicted on that basis. Furthermore, the action of a specific α-arabinofuranosidase on the tetrasaccharide was to remove a single arabinose residue, presumably the terminal non-reducing sugar, and to produce a product that was indistinguishable on electrophoresis from the triarabinoside. Changes in rotation were compatible with this assumption. 5. It is concluded that the structures of the hydroxyprolyl tri- and tetra-arabinosides of potato lectin are: βAraƒ1→2βAraƒ1→2βAraƒ1→Hyp and αAraƒ1→3βAraƒ1→2βAraƒ 1→2βAraƒ1→Hyp. These are identical with compounds that have been isolated from the insoluble hydroxyproline-rich glycoproteins of plant cell walls.  相似文献   

18.
Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2′:2,1′-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2′:2,1′-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).  相似文献   

19.
α-l-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60°C and exhibited stability at pH values from 3 to 7 and at temperatures up to 60°C. The enzymes released arabinose from p-nitrophenyl-α-l-arabinofuranoside, O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, and arabinose-containing polysaccharides but not from O-β-d-xylopyranosyl-(1→2)-O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. α-l-Arabinofuranosidase I also released arabinose from O-β-d-xylopy-ranosyl-(1→4)-[O-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. However, α-l-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. α-l-Arabinofuranosidase I hydrolyzed all linkages that can occur between two α-l-arabinofuranosyl residues in the following order: (1→5) linkage > (1→3) linkage > (1→2) linkage. α-l-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1→5) linkage > (1→2) linkage > (1→3) linkage. α-l-Arabinofuranosidase I preferentially hydrolyzed the (1→5) linkage of branched arabinotrisaccharide. On the other hand, α-l-arabinofuranosidase II preferentially hydrolyzed the (1→3) linkage in the same substrate. α-l-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas α-l-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.Recently, it has been proven that l-arabinose selectively inhibits intestinal sucrase in a noncompetitive manner and reduces the glycemic response after sucrose ingestion in animals (33). Based on this observation, l-arabinose can be used as a physiologically functional sugar that inhibits sucrose digestion. Effective l-arabinose production is therefore important in the food industry. l-Arabinosyl residues are widely distributed in hemicelluloses, such as arabinan, arabinoxylan, gum arabic, and arabinogalactan, and the α-l-arabinofuranosidases (α-l-AFases) (EC 3.2.1.55) have proven to be essential tools for enzymatic degradation of hemicelluloses and structural studies of these compounds.α-l-AFases have been classified into two families of glycanases (families 51 and 54) on the basis of amino acid sequence similarities (11). The two families of α-l-AFases also differ in substrate specificity for arabinose-containing polysaccharides. Beldman et al. summarized the α-l-AFase classification based on substrate specificities (3). One group contains the Arafur A (family 51) enzymes, which exhibit very little or no activity with arabinose-containing polysaccharides. The other group contains the Arafur B (family 54) enzymes, which cleave arabinosyl side chains from polymers. However, this classification is too broad to define the substrate specificities of α-l-AFases. There have been many studies of the α-l-AFases (3, 12), especially the α-l-AFases of Aspergillus species (28, 1215, 17, 22, 23, 2832, 3639, 4143, 46). However, there have been only a few studies of the precise specificities of these α-l-AFases. In previous work, we elucidated the substrate specificities of α-l-AFases from Aspergillus niger 5-16 (17) and Bacillus subtilis 3-6 (16, 18), which should be classified in the Arafur A group and exhibit activity with arabinoxylooligosaccharides, synthetic methyl 2-O-, 3-O-, and 5-O-arabinofuranosyl-α-l-arabinofuranosides (arabinofuranobiosides) (20), and methyl 3,5-di-O-α-l-arabinofuranosyl-α-l-arabinofuranoside (arabinofuranotrioside) (19).In the present work, we purified two α-l-AFases from a culture filtrate of Aspergillus awamori IFO 4033 and determined the substrate specificities of these α-l-AFases by using arabinose-containing polysaccharides and the core oligosaccharides of arabinoxylan and arabinan.  相似文献   

20.
The ultrastructure of isolated cell walls of Saccharomyces cerevisiae from the log and stationary phases of growth was studied after treatment with the following enzymes: purified endo-β-(1 → 3)-glucanase and endo-β-(1 → 6)-glucanase produced by Bacillus circulans; purified exo-β-glucanase and endo-β-(1 → 3)-glucanase produced by Schizosaccharomyces versatilis; commercial Pronase. While exo-β-glucanase from S. versatilis had no electron microscopically detectable effect on the walls, Pronase removed part of the external amorphous wall material disclosing an amorphous wall layer in which fibrils were indistinctly visible. Amorphous wall material was completely removed by the effect of either endo-β-(1 → 3)- or endo-β-(1 → 6)-glucanase of B. circulans or by a mixture of the two enzymes. As a result of these treatments a continuous fibrillar component appeared, composed of densely interwoven microfibrils resisting further action by both of the B. circulans enzymes. The fibrillar wall component was also demonstrated in untreated cell walls by electron microscopy after negative staining. Because of the complete disappearance of the fibrils following treatment with the S. versatilis endo-β-(1 → 3)-glucanase it can be concluded that this fibrillar component is composed of β-(1 → 3)-linked glucan. Bud scars were the only wall structures resistant to the effect of the latter enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号