首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole genome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. However, analysis of somatic copy-number changes from sequencing data is still challenging because of insufficient sequencing coverage, unknown tumor sample purity and subclonal heterogeneity. Here we describe a computational framework, named SomatiCA, which explicitly accounts for tumor purity and subclonality in the analysis of somatic copy-number profiles. Taking read depths (RD) and lesser allele frequencies (LAF) as input, SomatiCA will output 1) admixture rate for each tumor sample, 2) somatic allelic copy-number for each genomic segment, 3) fraction of tumor cells with subclonal change in each somatic copy number aberration (SCNA), and 4) a list of substantial genomic aberration events including gain, loss and LOH. SomatiCA is available as a Bioconductor R package at http://www.bioconductor.org/packages/2.13/bioc/html/SomatiCA.html.  相似文献   

2.
Normalization is an essential step in the analysis of high-throughput data. Multi-sample global normalization methods, such as quantile normalization, have been successfully used to remove technical variation. However, these methods rely on the assumption that observed global changes across samples are due to unwanted technical variability. Applying global normalization methods has the potential to remove biologically driven variation. Currently, it is up to the subject matter experts to determine if the stated assumptions are appropriate. Here, we propose a data-driven alternative. We demonstrate the utility of our method (quantro) through examples and simulations. A software implementation is available from http://www.bioconductor.org/packages/release/bioc/html/quantro.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0679-0) contains supplementary material, which is available to authorized users.  相似文献   

3.
Tumors are characterized by properties of genetic instability, heterogeneity, and significant oligoclonality. Elucidating this intratumoral heterogeneity is challenging but important. In this study, we propose a framework, BubbleTree, to characterize the tumor clonality using next generation sequencing (NGS) data. BubbleTree simultaneously elucidates the complexity of a tumor biopsy, estimating cancerous cell purity, tumor ploidy, allele-specific copy number, and clonality and represents this in an intuitive graph. We further developed a three-step heuristic method to automate the interpretation of the BubbleTree graph, using a divide-and-conquer strategy. In this study, we demonstrated the performance of BubbleTree with comparisons to similar commonly used tools such as THetA2, ABSOLUTE, AbsCN-seq and ASCAT, using both simulated and patient-derived data. BubbleTree outperformed these tools, particularly in identifying tumor subclonal populations and polyploidy. We further demonstrated BubbleTree''s utility in tracking clonality changes from patients’ primary to metastatic tumor and dating somatic single nucleotide and copy number variants along the tumor clonal evolution. Overall, the BubbleTree graph and corresponding model is a powerful approach to provide a comprehensive spectrum of the heterogeneous tumor karyotype in human tumors. BubbleTree is R-based and freely available to the research community (https://www.bioconductor.org/packages/release/bioc/html/BubbleTree.html).  相似文献   

4.
5.
Linking networks of molecular interactions to cellular functions and phenotypes is a key goal in systems biology. Here, we adapt concepts of spatial statistics to assess the functional content of molecular networks. Based on the guilt-by-association principle, our approach (called SANTA) quantifies the strength of association between a gene set and a network, and functionally annotates molecular networks like other enrichment methods annotate lists of genes. As a general association measure, SANTA can (i) functionally annotate experimentally derived networks using a collection of curated gene sets and (ii) annotate experimentally derived gene sets using a collection of curated networks, as well as (iii) prioritize genes for follow-up analyses. We exemplify the efficacy of SANTA in several case studies using the S. cerevisiae genetic interaction network and genome-wide RNAi screens in cancer cell lines. Our theory, simulations, and applications show that SANTA provides a principled statistical way to quantify the association between molecular networks and cellular functions and phenotypes. SANTA is available from http://bioconductor.org/packages/release/bioc/html/SANTA.html.  相似文献   

6.
7.

Background

So far many algorithms have been proposed towards the detection of significant genes in microarray analysis problems. Several of those approaches are freely available as R-packages though their engagement in gene expression analysis by non-bioinformaticians is usually a frustrating task. Besides, only some of those packages offer a complete suite of tools starting from initial data import and ending to analysis report. Here we present an R/Bioconductor package that implements a hybrid gene selection method along with a bunch of functions to facilitate a thorough and convenient gene expression profiling analysis.

Results

mAPKL is an open-source R/Bioconductor package that implements the mAP-KL hybrid gene selection method. The advantage of this method is that selects a small number of gene exemplars while achieving comparable classification results to other well established algorithms on a variety of datasets and dataset sizes. The mAPKL package is accompanied with extra functionalities including (i) solid data import; (ii) data sampling following a user-defined proportion; (iii) preprocessing through several normalization and transformation alternatives; (iv) classification with the aid of SVM and performance evaluation; (v) network analysis of the significant genes (exemplars), including degree of centrality, closeness, betweeness, clustering coefficient as well as the construction of an edge list table; (vi) gene annotation analysis, (vii) pathway analysis and (viii) auto-generated analysis reporting.

Conclusions

Users are able to run a thorough gene expression analysis in a timely manner starting from raw data and concluding to network characteristics of the selected gene exemplars. Detailed instructions and example data are provided in the R package, which is freely available at Bioconductor under the GPL-2 or later license http://www.bioconductor.org/packages/3.1/bioc/html/mAPKL.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0719-5) contains supplementary material, which is available to authorized users.  相似文献   

8.
SUMMARY: If a cancer patient develops multiple tumors, it is sometimes impossible to determine whether these tumors are independent or clonal based solely on pathological characteristics. Investigators have studied how to improve this diagnostic challenge by comparing the presence of loss of heterozygosity (LOH) at selected genetic locations of tumor samples, or by comparing genomewide copy number array profiles. We have previously developed statistical methodology to compare such genomic profiles for an evidence of clonality. We assembled the software for these tests in a new R package called 'Clonality'. For LOH profiles, the package contains significance tests. The analysis of copy number profiles includes a likelihood ratio statistic and reference distribution, as well as an option to produce various plots that summarize the results. AVAILABILITY: Bioconductor (http://bioconductor.org/packages/release/bioc/html/Clonality.html) and http://www.mskcc.org/mskcc/html/13287.cfm.  相似文献   

9.
The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease.Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: rf.uma-vinu@toduab.siana  相似文献   

10.
Motivation: As the use of microarrays in human studies continuesto increase, stringent quality assurance is necessary to ensureaccurate experimental interpretation. We present a formal approachfor microarray quality assessment that is based on dimensionreduction of established measures of signal and noise componentsof expression followed by parametric multivariate outlier testing. Results: We applied our approach to several data resources.First, as a negative control, we found that the Affymetrix andIllumina contributions to MAQC data were free from outliersat a nominal outlier flagging rate of =0.01. Second, we createda tunable framework for artificially corrupting intensity datafrom the Affymetrix Latin Square spike-in experiment to allowinvestigation of sensitivity and specificity of quality assurance(QA) criteria. Third, we applied the procedure to 507 Affymetrixmicroarray GeneChips processed with RNA from human peripheralblood samples. We show that exclusion of arrays by this approachsubstantially increases inferential power, or the ability todetect differential expression, in large clinical studies. Availability: http://bioconductor.org/packages/2.3/bioc/html/arrayMvout.htmland http://bioconductor.org/packages/2.3/bioc/html/affyContam.htmlaffyContam (credentials: readonly/readonly) Contact: aasare{at}immunetolerance.org; stvjc{at}channing.harvard.edu The authors wish it to be known that, in their opinion, thefirst two authors should be regarded as joint First Authors. Associate Editor: Trey Ideker  相似文献   

11.
12.
13.
14.
15.
We present the ggtreeExtra package for visualizing heterogeneous data with a phylogenetic tree in a circular or rectangular layout (https://www.bioconductor.org/packages/ggtreeExtra). The package supports more data types and visualization methods than other tools. It supports using the grammar of graphics syntax to present data on a tree with richly annotated layers and allows evolutionary statistics inferred by commonly used software to be integrated and visualized with external data. GgtreeExtra is a universal tool for tree data visualization. It extends the applications of the phylogenetic tree in different disciplines by making more domain-specific data to be available to visualize and interpret in the evolutionary context.  相似文献   

16.
17.
A key benefit of long-read nanopore sequencing technology is the ability to detect modified DNA bases, such as 5-methylcytosine. The lack of R/Bioconductor tools for the effective visualization of nanopore methylation profiles between samples from different experimental groups led us to develop the NanoMethViz R package. Our software can handle methylation output generated from a range of different methylation callers and manages large datasets using a compressed data format. To fully explore the methylation patterns in a dataset, NanoMethViz allows plotting of data at various resolutions. At the sample-level, we use dimensionality reduction to look at the relationships between methylation profiles in an unsupervised way. We visualize methylation profiles of classes of features such as genes or CpG islands by scaling them to relative positions and aggregating their profiles. At the finest resolution, we visualize methylation patterns across individual reads along the genome using the spaghetti plot and heatmaps, allowing users to explore particular genes or genomic regions of interest. In summary, our software makes the handling of methylation signal more convenient, expands upon the visualization options for nanopore data and works seamlessly with existing methylation analysis tools available in the Bioconductor project. Our software is available at https://bioconductor.org/packages/NanoMethViz.  相似文献   

18.
19.
Homologous recombination is associated with the dynamic assembly and disassembly of DNA–protein complexes. Assembly of a nucleoprotein filament comprising ssDNA and the RecA homolog, Rad51, is a key step required for homology search during recombination. The budding yeast Srs2 DNA translocase is known to dismantle Rad51 filament in vitro. However, there is limited evidence to support the dismantling activity of Srs2 in vivo. Here, we show that Srs2 indeed disrupts Rad51-containing complexes from chromosomes during meiosis. Overexpression of Srs2 during the meiotic prophase impairs meiotic recombination and removes Rad51 from meiotic chromosomes. This dismantling activity is specific for Rad51, as Srs2 Overexpression does not remove Dmc1 (a meiosis-specific Rad51 homolog), Rad52 (a Rad51 mediator), or replication protein A (RPA; a single-stranded DNA-binding protein). Rather, RPA replaces Rad51 under these conditions. A mutant Srs2 lacking helicase activity cannot remove Rad51 from meiotic chromosomes. Interestingly, the Rad51-binding domain of Srs2, which is critical for Rad51-dismantling activity in vitro, is not essential for this activity in vivo. Our results suggest that a precise level of Srs2, in the form of the Srs2 translocase, is required to appropriately regulate the Rad51 nucleoprotein filament dynamics during meiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号