首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In this study, we examined the effects of TRPV1 activation on cell injury pathways in this subpopulation of neurons in the streptozotocin-induced diabetic rat model. Large DRG neurons from diabetic (6–8 weeks) rats displayed increased oxidative stress and activation of cell injury markers compared with healthy controls. Capsaicin (CAP) treatment induced decreased labeling of MitoTracker Red and increased cytosolic cytochrome c and activation of caspase 3 in large neurons isolated from diabetic rats. CAP treatment also induced oxidative stress in large diabetic DRG neurons, which was blocked by pre-treatment with caspase or calpain inhibitor. In addition, both μ-calpain expression and calpain activity were significantly increased in DRG neurons from diabetic rats after CAP treatment. Treatment with capsazepine, a competitive TRPV1 antagonist, markedly reduced these abnormalities in vitro and prevented activation of cell injury in large DRG neurons in diabetic rats in vivo . These results suggest that activation of the TRPV1 receptor activates pathways associated with caspase-dependent and calpain-dependent stress in large DRG neurons in STZ-diabetic rats. Activation of the TRPV1 receptor may contribute to preferential neuronal stress in large DRG neurons relatively early in diabetic sensory neuropathy.  相似文献   

3.
The vascular complications associated with type 1 diabetes are to some extent related to the dysfunction of the endothelium leading to an increased vascular permeability and plasma extravasation in the surrounding tissues. The various micro- and macro-vascular complications of diabetes develop over time, leading to nephropathy, retinopathy and neuropathy and cardiomyopathy. In the present study, the effect of a novel selective bradykinin B1 receptor (BKB1-R) antagonist, R-954, was investigated on the changes of vascular permeability in the skin and retina of streptozotocin (STZ)-induced type 1 diabetic rats. Plasma extravasation increased in the skin and retina of STZ-diabetic rats after 1 week and persisted over 4 weeks following STZ injection. Acute treatment with R-954 (2 mg/kg, bolus s.c.) highly reduced the elevated vascular permeability in both 1- and 4-week STZ-diabetic rats. These results showed that the inducible BKB1-R subtype modulates the vascular permeability of the skin and retina of type 1 diabetic rats and suggests that BKB1-R antagonists could have a beneficial role in diabetic neuropathy and retinopathy.  相似文献   

4.
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.  相似文献   

5.
Diabetic neuropathy is a major complication of diabetes that results in the progressive deterioration of the sensory nervous system. Mitochondrial dysfunction has been proposed to play an important role in the pathogenesis of the neurodegeneration observed in diabetic neuropathy. Our recent work has shown that mitochondrial dysfunction occurs in dorsal root ganglia (DRG) sensory neurons in streptozotocin (STZ) induced diabetic rodents. In neurons, the nutrient excess associated with prolonged diabetes may trigger a switching off of AMP kinase (AMPK) and/or silent information regulator T1 (SIRT1) signaling leading to impaired peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) expression/activity and diminished mitochondrial activity. This review briefly summarizes the alterations of mitochondrial function and proteome in sensory neurons of STZ-diabetic rodents. We also discuss the possible involvement of AMPK/SIRT/PGC-1α pathway in other diabetic models and different tissues affected by diabetes.  相似文献   

6.
Ćulić  M.  Šaponjić  J.  Janković  B.  Kalauzi  A.  Jovanović  A. 《Neurophysiology》2001,33(1):48-52
In anesthetized Wistar rats, we studied the effect of electrical stimulation of the locus coeruleus (LC) on the firing rates of Purkinje cells using spectral analysis. The frequency of extracellularly recorded activity of Purkinje cells was measured before and during the 1st, 5th, 6th, and 11th min after cessation of 10-sec-long LC stimulations. Spectral analysis of the Purkinje cell firing rates (imp./bin, the bin duration was 2-8 sec) for 60- to 120-sec-long intervals was performed using fast Fourier transformation after digital conversion of unitary spikes. Mean power spectra of the Purkinje cell firing rates (derived from 8-sec-long consecutive epochs at a sampling rate of 256 sec-1) showed an increase in the slow frequency range (0.1-1.0 Hz) after LC stimulation, particularly due to the slowest components (below 0.5 Hz). This effect lasted more than 1 min and usually less than 6 min after cessation of LC stimulation and could be interpreted as the development of slow oscillations in the Purkinje cell firing. Our results suggest that slow oscillations of the firing rate of cerebellar output neurons, induced by LC stimulation, reflect a specific coordination of the cerebellar neuronal activities (important for a central norepinephrine influence) in regulation of different pathological states.  相似文献   

7.
Summary Five monoclonal antibodies reacting with intracellular constituents of Purkinje cells were investigated by means of indirect immunofluorescence on fresh-frozen sections of the cerebellum and retina from developing and adult normal and mutant mice. Antibodies PC1, PC2 and PC3, which recognize Purkinje cells, but no other cerebellar neuron type, label these cells from day 4 onward. PC4 antigen is expressed in addition to Purkinje cells also in granule cells and neurons of deep cerebellar nuclei and appears in Purkinje cells at day 4. M1 antigen (Lagenaur et al. 1980) is first detectable in Purkinje cell bodies by day 5; it is also detectable in deep cerebellar neurons. In the adult retina, only PC4 antigen is detectably expressed and is localized in the inner segments of photoreceptor cells.The neurological mutants weaver, reeler,jimpy and wobbler show detectable levels of these antigens in Purkinje cells. However, the mutants staggerer and Purkinje cell degeneration are abnormal in expression PC1, PC2, PC3, and M1 antigens. Staggerer never starts to express the antigens during development, whereas Purkinje cell degeneration first expresses the antigens, but then loses antigen expression after day 23. PC4 antigen is detectable in the remaining Purkinje cells in staggerer and Purkinje cell degeneration mice at all ages tested in this study. Deep cerebellar neurons are positive for both antigens, PC4 and M1, in all mutants and at all ages studied. In retinas of staggerer and Purkinje cell degeneration mutants, PC4 antigen is normally detectable in the inner segments of photoreceptor cells, even when these have started to degenerate in the case of Purkinje cell degeneration.  相似文献   

8.
Diabetic neuropathy develops as a result of hyperglycemia- induced local metabolic and microvascular changes in both type I and type II diabetes mellitus. Diabetic neuropathy shows slower impulse conduction, axonal degeneration, and impaired regeneration. Diabetic neuropathy affects peripheral, central, and visceral sensorimotor and motor nerves, causing improper locomotor and visceral organ dysfunctions. The pathogenesis of diabetic neuropathy is complex and involves multiple pathways. Lack of success in preventing neuropathy, even with successful treatment of hyperglycemia, suggests the presence of early mediators between hyperglycemia-induced metabolic and enzymatic changes and functional and structural properties of Schwann cells (SCs) and axons. It is feasible that once activated, such mediators can act independently of the initial metabolic stimulus to modulate SC-axonal communication. Neuropoietic cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), tumor necrosis factor alpha (TNF-α), and transforming growth factor beta (TGF- β), exhibit pleiotrophic effects on homeostasis of glia and neurons in central, peripheral, and autonomic nervous system. These cytokines are produced locally by resident and infiltrating macrophages, lymphocytes, mast cells, SCs, fibroblasts, and sensory neurons. Metabolic changes induced by hyperglycemia lead to dysregulation of cytokine control. Moreover, their regulatory roles in nerve degeneration and regeneration may potentially be utilized for the prevention and/or therapy of diabetic neuropathy.  相似文献   

9.
The highly conserved dual-specificity tyrosine phosphorylation–regulated kinase 1A (Dyrk1A) plays crucial roles during central nervous system development and homeostasis. Furthermore, its hyperactivity is considered responsible for some neurological defects in individuals with Down syndrome. We set out to establish a zebrafish model expressing human Dyrk1A that could be further used to characterize the interaction between Dyrk1A and neurological phenotypes. First, we revealed the prominent expression of dyrk1a homologs in cerebellar neurons in the zebrafish larval and adult brains. Overexpression of human dyrk1a in postmitotic cerebellar Purkinje neurons resulted in a structural misorganization of the Purkinje cells in cerebellar hemispheres and a compaction of this cell population. This impaired Purkinje cell organization was progressive, leading to an age-dependent dispersal of Purkinje neurons throughout the cerebellar molecular layer with larval swim deficits resulting in miscoordination of swimming and reduced exploratory behavior in aged adults. We also found that the structural misorganization of the larval Purkinje cell layer could be rescued by pharmacological treatment with Dyrk1A inhibitors. We further reveal the in vivo efficiency of a novel selective Dyrk1A inhibitor, KuFal194. These findings demonstrate that the zebrafish is a well-suited vertebrate organism to genetically model severe neurological diseases with single cell type specificity. Such models can be used to relate molecular malfunction to cellular deficits, impaired tissue formation, and organismal behavior and can also be used for pharmacological compound testing and validation.  相似文献   

10.
Mardon K  Kassiou M  Donald A 《Life sciences》1999,65(23):PL 281-PL 286
To study the effect of diabetes mellitus on the density of sigma receptors, in vitro binding experiments were conducted in whole brain homogenate membranes of 5-week and 10-week control rats and streptozotocin (STZ)-induced diabetic rats. sigma-1 Receptors were labelled with [3H](+)-pentazocine while sigma-2 receptors were labelled with [3H] 1,3-di-o-tolylguanidine (DTG) in the presence of 0.5 microM (+)-pentazocine to mask sigma-1 sites. Non-specific binding was determined in the presence of 20 microM haloperidol. Scatchard analysis revealed a 27% (p<0.01) decreased in sigma-1 receptor density and a 33% (p<0.01) decreased in sigma-2 receptor density in whole brain of 10-week STZ-diabetic rats. No statistically significant difference was found in the sigma receptor content of 5-week STZ-diabetic rats. These results provide evidence that neuronal sigma receptors are reduced in 10-week STZ-diabetic rats and suggest that changes in sigma receptors may play a role in diabetes related abnormalities. Further evaluation is required to determine whether changes observed in the brain are homogeneous for either or both sigma receptor subtypes as well as potential links between other CNS receptor changes previously observed in STZ-induced diabetic rats.  相似文献   

11.
Opioids play an important role in the regulation of glucose homeostasis. In the previous report, we showed that activation of opioid mu-receptors produced a plasma glucose lowering effect in diabetic rats lacking insulin. In the present study, we found that the response of opioid mu-receptor is more sensitive in streptozotocin-induced diabetic rats (STZ-diabetic rats) than in normal rats. Intravenous injection of loperamide, an agonist of opioid mu-receptors, induced a dose-dependent decrease of plasma glucose from 3 microg/kg to 60 microg/kg in fasting STZ-diabetic rats. However, loperamide decreased the plasma glucose of normal fasting rats at the doses of 0.3 mg/kg to 1.5 mg/kg, which were much higher than those needed to produce the same effect in diabetic rats. The plasma glucose-lowering action of loperamide at the dose effective in normal rats disappeared in opioid mu-receptor knockout mice, while the plasma glucose-lowering response to loperamide was still observed in wild-type mice. This opens the possibility of mediation through opioid mu-receptor in the plasma glucose-lowering action of loperamide. Moreover, the mRNA level of opioid mu-receptor in the liver markedly increased in STZ-diabetic rats compared to normal rats. Normalization of plasma glucose concentrations in STZ-diabetic rats with exogenous insulin or phlorizin reversed mRNA and protein levels of opioid mu-receptor in the liver after 4 days of treatment. This shows that correction of hyperglycemia in STZ-diabetic rats may reverse the higher gene expression of opioid mu-receptor. These results suggest that hyperglycemia is responsible for increase of opioid mu-receptor in STZ-diabetic rats.  相似文献   

12.
Sirtuin (SIRT1) inactivation underlies the pathogenesis of insulin resistance and hyperglycaemia-associated vascular complications, but its role in diabetic neuropathy (DN) has not been yet explored. We have evaluated hyperglycaemia-induced alteration of SIRT1 signalling and the effect of isoliquiritigenin (ILQ) on SIRT1-directed AMP kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) signalling in peripheral nerves of streptozotocin (STZ) (55 mg/kg, ip)-induced diabetic rats and in high glucose (30 mM)-exposed neuro2a (N2A) cells. Diabetic rats and high glucose-exposed N2A cells showed reduction in SIRT1 expression with consequent decline in mitochondrial biogenesis and autophagy. ILQ (10 & 20 mg/kg, po) administration to diabetic rats for 2 weeks and exposure to glucose-insulted N2A cells resulted in significant SIRT1 activation with concurrent increase in mitochondrial biogenesis and autophagy. ILQ administration also enhanced NAD+/NADH ratio in peripheral sciatic nerves which explains its possible SIRT1 modulatory effect. Functional and behavioural studies show beneficial effect of ILQ as it alleviated nerve conduction and nerve blood flow deficits in diabetic rats along with improvement in behavioural parameters (hyperalgesia and allodynia). ILQ treatment to N2A cells reduced high glucose-driven ROS production and mitochondrial membrane depolarization. Further, ILQ-mediated SIRT1 activation facilitated the Nrf2-directed antioxidant signalling. Overall, results from this study suggest that SIRT1 activation by ILQ mimic effects of calorie restriction, that is, PGC-1α-mediated mitochondrial biogenesis, FOXO3a mediated stress resistance and AMPK mediated autophagy effects to counteract the multiple manifestations in experimental DN.  相似文献   

13.
A single dose of actinomycin was applied to young Wistar albino rats in the critical phase of their cerebellar development. The morphological alterations of the cerebellar cortex were studied by means of light and electron microscopy on several postnatal days. The cell types of the cerebellar cortex reacted in different ways toward the noxious substance according to their stage of development. The acute alterations consisted of an edematous reaction of the neuronal and glial perikarya (light degeneration) and a shrinkage of the neurons (dark degeneration). A massive intercellular edema and a rarefaction of glia cells as well as the Purkinje cell fibres proved to be the long-term damage. This pattern of the alteration was discussed regarding the chemodifferentiation of the cells of the cerebellar cortex, the onset of cerebellar function on day 14, and the establishment of a neuroglial functional unit.  相似文献   

14.
Hyperglycemia plays a critical role in the development and progression of diabetic neuropathy. One of the mechanisms by which hyperglycemia causes neural degeneration is via the increased oxidative stress that accompanies diabetes. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) and S100B, both astrocytic markers. In the present study, we examined glial reactivity in hippocampus, cortex, and cerebellum of streptozotocin (STZ)-induced diabetic rats by determining the expression of GFAP and S-100B and we evaluated the effect of melatonin on the glial response. Western blot measurement of contents in brain regions after 6 weeks of STZ-induced diabetes indicated significant increases in these constituents compared with those in nondiabetic controls. Administration of melatonin prevented the upregulation of GFAP in all brain regions of diabetic rats. Using GFAP immunohistochemistry, we observed an increase in GFAP immunostaining in the hippocampus of STZ-diabetic rats relative to levels in the control brains. Treatment with melatonin resulted in an obvious reduction of GFAP-immunoreactive astrocytes in hippocampus. Like GFAP, S100B levels also were increased in all three brain areas of diabetic rats, an effect also reduced by melatonin treatment. Finally, the levels of lipid peroxidation products were elevated as a consequence of diabetes, with this change also being prevented by melatonin. These results suggest that diabetes causes increased glial reactivity possibly due to elevated oxidative stress, and administration of melatonin represents an achievable adjunct therapy for preventing gliosis.  相似文献   

15.
The cerebellar calcification (CC) rat is a new neurodegenerative mutant with severe Purkinje cell loss and symmetrical calcifications in the cerebellar cortex manifesting ataxia: lack of coordination in body movements. In the present study, histopathological features were examined in the Purkinje cell degeneration in postnatal homozygous suckling rats without clinical signs, which were genotyped by microsatellite markers. In addition, the calcified Purkinje cells were investigated ultrastructurally and elemental analysis was performed on the deposits. Body weight of the homozygous (cc/cc) rats was already slightly lower compared with the heterozygotes (cc/+) in the neonatal stage. The degeneration of the Purkinje cells in the cc/cc rats was recognized obviously in lobules VI, VII, VIII and IX from 14 days after birth, a few days before the appearance of the ataxic behavior. The Purkinje cells in the region along the fissure between the VIII and IX lobule areas were intensely positive for periodic acid-Schiff reaction specific to glycoconjugates, and in this region, calcium depositions were weakly positive for von Kossa's stain. Electron microscopy also revealed that the calcified Purkinje cells possessed numerous electron-dense bodies containing inclusions with cystic structures such as vesicles, mitochondria and lysosomes, and these bodies were mainly composed of calcium and phosphorous. These findings suggest abnormal storage of glycoconjugates might be a trigger of Purkinje cell degeneration and serves as a matrix for accumulation of calcium phosphate in the cerebellum of CC rats.  相似文献   

16.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD.  相似文献   

17.
Ischemia-induced excitotoxicity at cerebellar Purkinje cells is presumably due to a persistent glutamate action. To the fact that they are more vulnerable to ischemia than other glutamate-innervated neurons, we studied whether additional mechanisms are present and whether cytoplasm Ca2+ plays a key role in their ischemic excitotoxicity. Ischemic changes in the excitability of Purkinje cells were measured by whole-cell recording in cerebellar slices of rats with less glutamate action. The role of cytoplasm Ca2+ was examined by two-photon cellular imaging and BAPTA infusion in Purkinje cells. Lowering perfusion rate to cerebellar slices deteriorated spike timing and raised spike capacity of Purkinje cells. These changes were associated with the reduction of spike refractory periods and threshold potentials, as well as the loss of their control to spike encoding. Ischemia-induced functional deterioration at Purkinje neurons was accompanied by cytoplasm Ca2+ rise and prevented by BAPTA infusion. Therefore, the ischemia destabilizes the spike encoding of Purkinje cells via raising cytoplasm Ca2+ without a need for glutamate, which subsequently causes their excitotoxic death.  相似文献   

18.
Neuronal apoptosis contributes to the progression of neurodegenerative disease. Primary cerebellar granule neurons are an established in vitro model for investigating neuronal death. After removal of serum and depolarizing potassium, granule neurons undergo apoptosis via a mechanism that requires intrinsic (mitochondrial) death signals; however, the role of extrinsic (death receptor-mediated) signals is presently unclear. Here, we investigate involvement of death receptor signaling in granule neuron apoptosis by expressing adenoviral, AU1-tagged, dominant-negative Fas-associated death domain (Ad-AU1-deltaFADD). Ad-AU1-deltaFADD decreased apoptosis of granule neurons from 65 +/- 5 to 27 +/- 2% (n = 7, p < 0.01). Unexpectedly, immunocytochemical staining for AU1 revealed that <5% of granule neurons expressed deltaFADD. In contrast, deltaFADD was expressed in >95% of calbindin-positive Purkinje neurons ( approximately 2% of the cerebellar culture). Granule neurons in proximity to deltaFADD-expressing Purkinje cells demonstrated markedly increased survival. Both granule and Purkinje neurons expressed insulin-like growth factor-I (IGF-I) receptors, and deltaFADD-mediated survival of granule neurons was inhibited by an IGF-I receptor blocking antibody. These results demonstrate that the selective suppression of death receptor signaling in Purkinje neurons is sufficient to rescue neighboring granule neurons that depend on Purkinje cell-derived IGF-I. Thus, the extrinsic death pathway has a profound but indirect effect on the survival of cerebellar granule neurons.  相似文献   

19.
We examined, using a Western blot technique, the contents and compositions of a specific neuronal protein, NCAM, and of an astrocyte marker, GFAP, in the hippocampus and cortex of rats with streptozotocin (STZ)-induced diabetes and compared these indices with those in control (intact) animals and STZ-diabetic rats treated with melatonin. Behavioral cognitive indices manifested in the passive avoidance test (PAT) and Morris water maze (MWM) learning performance were also estimated in the above groups of animals. As was found, STZ-diabetic rats demonstrated clear cognitive deficits according to the values of the retention latency in the PAT and time of reaching the escape platform in the MWM performance. In these animals, the GFAP content was elevated, and the amount of degraded products of this protein increased, as compared with the control. Simultaneously, considerable down-regulation of the NCAM expression and modifications of NCAM isoform composition were found in diabetic animals. In addition, significantly increased levels of lipid peroxidation (according to the amounts of malondialdehyde + 4-hydroxyalkenals) were measured in the cortex and hippocampus of rats with stable diabetic hyperglycemia. All the above-mentioned shifts were significantly smoothed or even nearly completely compensated in the case of treatment of STZ-diabetic rats with melatonin (10 mg/kg per day). The role of diabetes-related changes in the amount and composition of specific neural and glial proteins in the development of cognitive deficits, the involvement of oxidative stress in the mechanisms of the respective shifts, and possible mechanisms of the neuroprotective effect of melatonin with respect to diabetes-related pathological biochemical and behavioral shifts are discussed. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 105–111, March–April, 2008.  相似文献   

20.
The functional role of histone deacetylase 3 (HDAC3) in the developing brain has yet to be elucidated. We show that mice lacking HDAC3 in neurons and glia of the central nervous system, Nes-Cre/HDAC3 conditional KO mice, show major abnormalities in the cytoarchitecture of the neocortex and cerebellum and die within 24 h of birth. Later-born neurons do not localize properly in the cortex. A similar mislocalization is observed with cerebellar Purkinje neurons. Although the proportion of astrocytes is higher than normal, the numbers of oligodendrocytes are reduced. In contrast, conditional knockout of HDAC3 in neurons of the forebrain and certain other brain regions, using Thy1-Cre and calcium/calmodulin dependent protein kinase II α-Cre for ablation, produces no overt abnormalities in the organization of cells within the cortex or of cerebellar Purkinje neurons at birth. However, both lines of conditional knockout mice suffer from progressive hind limb paralysis and ataxia and die around 6 weeks after birth. The mice display an increase in overall numbers of cells, higher numbers of astrocytes, and Purkinje neuron degeneration. Taken together, our results demonstrate that HDAC3 plays an essential role in regulating brain development, with effects on both neurons and glia in different brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号