首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Introduction

Adalimumab is a fully human anti–tumor necrosis factor α (anti-TNFα) monoclonal antibody that specifically blocks the interaction of TNFα with its receptors. It binds both soluble and transmembrane TNFα. We hypothesized that blocking these TNFα signals regulates the altered TNFα production in rheumatoid arthritis (RA) patients.

Methods

We compared, by flow cytometry, Toll-like receptor induction levels of membrane and intracellular TNFα in monocytes (iTNFα + CD14+ cells) from 12 patients before and after adalimumab treatment with those from 5 healthy donors.

Results

Before starting the treatment, the percentage of iTNFα+ CD14+ cells in the RA patients was significantly lower than that in healthy donors (mean ± SEM = 33.16 ± 4.82% vs 66.51 ± 2.4%, P < 0.001). When we added in vitro TNFα to healthy donor culture cells, levels of iTNFα+ CD14+ cells decreased, suggesting that the TNFα signal was responsible for the iTNFα+ CD14+ cell downregulation observed in the RA patients. After 2, 6 and 12 adalimumab injections, we observed significant blocking of membrane and soluble TNFα and a progressive increase in iTNFα+ CD14+ cells in ten patients with a good to moderate response as defined by the European League Against Rheumatism (EULAR) criteria. Levels of iTNFα+ CD14+ cells after 12 injections in these 10 patients were comparable to levels in healthy donors. In two patients, iTNFα+ CD14+ cell upregulation was not observed, and their EULAR-defined responses had not improved. The first patient developed antiadalimumab antibodies, explaining why adalimumab was not able to block membrane and soluble TNFα. In the second patient, adalimumab was discontinued because of adverse effects, which led to a decrease in iTNFα+ CD14+ cells to levels measured before treatment.

Conclusions

Our findings suggest that adalimumab treatment in RA patients can return iTNFα levels to those of healthy donors. This effect was not observed in the presence of neutralizing antiadalimumab antibodies.  相似文献   

2.

Background

Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids.

Methods

Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry.

Results

There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all).

Conclusions

Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.  相似文献   

3.

Introduction

Targeting CD74 as the invariant chain of major histocompatibility complexes (MHC) became possible by the availability of a specific humanized monoclonal antibody, milatuzumab, which is under investigation in patients with hematological neoplasms. CD74 has been reported to regulate chemo-attractant migration of macrophages and dendritic cells, while the role of CD74 on peripheral naïve and memory B cells also expressing CD74 remains unknown. Therefore, the current study addressed the influence of milatuzumab on B-cell proliferation, chemo-attractant migration, and adhesion molecule expression.

Methods

Surface expression of CD74 on CD27- naïve and CD27+ memory B cells as well as other peripheral blood mononuclear cells (PBMCs) obtained from normals, including the co-expression of CD44, CXCR4, and the adhesion molecules CD62L, β7-integrin, β1-integrin and CD9 were studied after binding of milatuzumab using multicolor flow cytometry. The influence of the antibody on B-cell proliferation and migration was analyzed in vitro in detail.

Results

In addition to monocytes, milatuzumab also specifically bound to human peripheral B cells, with a higher intensity on CD27+ memory versus CD27- naïve B cells. The antibody reduced B-cell proliferation significantly but moderately, induced enhanced spontaneous and CXCL12-dependent migration together with changes in the expression of adhesion molecules, CD44, β7-integrin and CD62L, mainly of CD27- naïve B cells. This was independent of macrophage migration-inhibitory factor as a ligand of CD74/CD44 complexes.

Conclusions

Milatuzumab leads to modestly reduced proliferation, alterations in migration, and adhesion molecule expression preferentially of CD27- naïve B cells. It thus may be a candidate antibody for the autoimmune disease therapy by modifying B cell functions.  相似文献   

4.
5.

Introduction

Circulating CD4 T cells expressing CXCR5, ICOS and/or PD-1 are counterparts of follicular helper T cells (Tfh). There are three subpopulations of circulating Tfh (cTfh): CXCR5 + CXCR3 + CCR6- (Tfh-Th1), CXCR5 + CXCR3-CCR6- (Tfh-Th2) and CXCR5 + CXCR3-CCR6+ (Tfh-Th17). Our objective was to study the B cell helping capacity of cTfh subsets, and examine their frequency in Rheumatoid Arthritis (RA) patients, together with the frequency of circulating plasmablasts (CD19 + CD20-CD38high).

Methods

Peripheral blood was drawn from RA patients with active disease (RA-a, DAS28 >2.6) (n = 17), RA in remission (RA-r, DAS28 <2.6) (n = 17) and healthy controls (HC) (n = 34). cTfh and plasmablast frequencies were determined by flow cytometry. Cocultures of sorted CD4 + CXCR5+ T cell subpopulations were established with autologous CD19 + CD27- naïve B cells of HC, and concentrations of IgG, A and M were measured in supernatants.

Results

Isolated Tfh-Th2 and Tfh-Th17 but not Tfh-Th1 cells, induced naïve B cells to secrete IgG and IgA. The frequency of CXCR5+ cells gated for CD4+ T cells was not different among HC, RA-a and RA-r. In contrast, both RA-a and RA-r patients demonstrated an increased frequency of CD4 + CXCR5 + ICOS+ T cells and augmented (%Tfh-Th2 + %Tfh-Th17)/%Tfh-Th1 ratio as compared with HC. In addition, RA-a but not RA-r patients, showed an increased frequency of circulating plasmablasts.

Conclusion

Both RA-a and RA-r patients demonstrate an increased frequency of cTfh and overrepresentation of cTfh subsets bearing a B cell helper phenotype, suggesting that altered germinal center dynamics play a role in RA pathogenesis. In contrast, only RA-a patients show an increased proportion of circulating plasmablasts.  相似文献   

6.

Objective

TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal.

Methods

Patients with RA were recruited for this study, (i) RA patients in clinical remission following a minimum of one year of TNFi therapy (n = −15); (2) Active RA patients, not currently or ever receiving TNFi (n = 18); and healthy control volunteers (n = 15). Patients in remission were divided into two groups: those who were maintained on TNFi and those who withdrew from TNFi and maintained on DMARDS. All patients underwent full clinical assessment. Peripheral blood mononuclear cells were isolated and NKR (CD94, NKG2A, CD161, CD69, CD57, CD158a, CD158b) expression on T-(CD3+CD56), NK-(CD3CD56+) and NKT-(CD3+CD56+) cells was determined by flow cytometry.

Results

Following TNFi withdrawal, percentages and numbers of circulating T cells, NK cells or NKT cell populations were unchanged in patients in remission versus active RA or HCs. Expression of the NKRs CD161, CD57, CD94 and NKG2A was significantly increased on CD3+CD56-T cells from patients in remission compared to active RA (p<0.05). CD3+CD56-T cell expression of CD94 and NKG2A was significantly increased in patients who remained in remission compared with patients whose disease flared (p<0.05), with no differences observed for CD161 and CD57. CD3+CD56 cell expression of NKG2A was inversely related to DAS28 (r = −0.612, p<0.005).

Conclusion

High CD94/NKG2A expression by T cells was demonstrated in remission patients following TNFi therapy compared to active RA, while low CD94/NKG2A were associated with disease flare following withdrawal of therapy.  相似文献   

7.

Background

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), an inflammatory lung disorder. COPD is characterized by an increase in CD8+ T cells within the central and peripheral airways. We hypothesized that the CD8+ T cells in COPD patients have increased Toll-like receptor (TLR) expression compared to control subjects due to the exposure of cigarette smoke in the airways.

Methods

Endobronchial biopsies and peripheral blood were obtained from COPD patients and control subjects. TLR4 and TLR9 expression was assessed by immunostaining of lung tissue and flow cytometry of the peripheral blood. CD8+ T cells isolated from peripheral blood were treated with or without cigarette smoke condensate (CSC) as well as TLR4 and TLR9 inhibitors. PCR and western blotting were used to determine TLR4 and TLR9 expression, while cytokine secretion from these cells was detected using electrochemiluminescence technology.

Results

No difference was observed in the overall expression of TLR4 and TLR9 in the lung tissue and peripheral blood of COPD patients compared to control subjects. However, COPD patients had increased TLR4 and TLR9 expression on lung CD8+ T cells. Exposure of CD8+ T cells to CSC resulted in an increase of TLR4 and TLR9 protein expression. CSC exposure also caused the activation of CD8+ T cells, resulting in the production of IL-1β, IL-6, IL-10, IL-12p70, TNFα and IFNγ. Furthermore, inhibition of TLR4 or TLR9 significantly attenuated the production of TNFα and IL-10.

Conclusions

Our results demonstrate increased expression of TLR4 and TLR9 on lung CD8+ T cells in COPD. CD8+ T cells exposed to CSC increased TLR4 and TLR9 levels and increased cytokine production. These results provide a new perspective on the role of CD8+ T cells in COPD.  相似文献   

8.

Introduction

Myeloid dendritic cells (mDCs) are potent T cell-activating antigen-presenting cells that have been suggested to play a crucial role in the regulation of immune responses in many disease states, including rheumatoid arthritis (RA). Despite this, studies that have reported on the capacity of naturally occurring circulating mDCs to regulate T cell activation in RA are still lacking. This study aimed to evaluate the phenotypic and functional properties of naturally occurring CD1c (BDCA-1)+ mDCs from synovial fluid (SF) compared to those from peripheral blood (PB) of RA patients.

Methods

CD1c+ mDC numbers and expression of costimulatory molecules were assessed by fluorescence-activated cell sorting (FACS) analysis in SF and PB from RA patients. Ex vivo secretion of 45 inflammatory mediators by mDCs from SF and PB of RA patients was determined by multiplex immunoassay. The capacity of mDCs from SF to activate autologous CD4+ T cells was measured.

Results

CD1c+ mDC numbers were significantly increased in SF versus PB of RA patients (mean 4.7% vs. 0.6%). mDCs from SF showed increased expression of antigen-presenting (human leukocyte antigen (HLA) class II, CD1c) and costimulatory molecules (CD80, CD86 and CD40). Numerous cytokines were equally abundantly produced by mDCs from both PB and SF (including IL-12, IL-23, IL-13, IL-21). SF mDCs secreted higher levels of interferon γ-inducible protein-10 (IP-10), monokine induced by interferon γ (MIG) and, thymus and activation-regulated chemokine (TARC), but lower macrophage-derived chemokine (MDC) levels compared to mDCs from PB. mDCs from SF displayed a strongly increased capacity to induce proliferation of CD4+ T cells associated with a strongly augmented IFNγ, IL-17, and IL-4 production.

Conclusions

This study suggests that increased numbers of CD1c+ mDCs in SF are involved in the inflammatory cascade intra-articularly by the secretion of specific T cell-attracting chemokines and the activation of self-reactive T cells.  相似文献   

9.

Instruction

Interleukin 27 (IL-27) is an important regulator of the proinflammatory T-cell response. In this study, we investigated its role in the pathogenesis of Behçet’s disease (BD).

Methods

IL-27 mRNA in peripheral blood mononuclear cells (PBMCs) was examined by performing RT-PCRs. Cytokine levels in sera or supernatants of PBMCs, naïve CD4+ T cells, dendritic cells (DCs) and DC/T cells were determined by enzyme-linked immunosorbent assay. We used RNA interference in naïve CD4+ T cells to study the role of interferon regulatory factor 8 (IRF8) in the inhibitory effect of IL-27 on Th17 cell differentiation. Flow cytometry was used to evaluate the frequency of IL-17- and interferon γ–producing T cells.

Results

The expression of IL-27p28 mRNA by PBMCs and IL-27 in the sera and supernatants of cultured PBMCs were markedly decreased in patients with active BD. A higher frequency of IL-17-producing CD4+ T (Th17) cells and increased IL-17 production under Th17 polarizing conditions were observed in patients with active BD. IL-27 significantly inhibited Th17 cell differentiation. Downregulation of IRF8 by RNA interference abrogated the suppressive effect of IL-27 on Th17 differentiation. IL-27 inhibited the production of IL-1β, IL-6 and IL-23, but promoted IL-10 production, by DCs. IL-27-treated DCs inhibited both the Th1 and Th17 cell responses.

Conclusions

The results of the present study suggest that a decreased IL-27 expression is associated with disease activity in BD patients. Low IL-27 expression may result in a higher Th1 and Th17 cell response and thereby promote the autoinflammatory reaction observed in BD. Manipulation of IL-27 may offer a new treatment modality for this disease.  相似文献   

10.

Introduction

The FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis plays a fundamental role in proliferation and differentiation of dendritic cells (DCs). As DCs play an important role in rheumatoid arthritis (RA) immunopathology we studied in detail the Flt3L/CD135 axis in RA patients.

Methods

The levels of Flt3L in (paired) serum and synovial fluid (SF) were quantified by enzyme-link immunosorbent assay (ELISA). Expression of Flt3L and CD135 in paired peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) was quantified by fluorescence-activated cell sorting (FACS). The expression of Flt3L, CD135 and TNF-Converting Enzyme (TACE) in synovial tissues (STs) and in vitro polarized macrophages and monocyte-derived DCs (Mo-DCs) was assessed by quantitative PCR (qPCR). CD135 ST expression was evaluated by immunohistochemistry and TACE ST expression was assessed by immunofluorescence. Flt3L serum levels were assessed in RA patients treated with oral prednisolone or adalimumab.

Results

Flt3L levels in RA serum, SF and ST were significantly elevated compared to gout patients and healthy individuals (HI). RA SF monocytes, natural killer cells and DCs expressed high levels of Flt3L and CD135 compared to HI. RA ST CD68+ and CD163+ macrophages, CD55+ fibroblast-like synoviocytes (FLS), CD31+ endothelial cells or infiltrating monocytes and CD19+ B cells co-expressed TACE. IFN-γ-differentiated macrophages expressed higher levels of Flt3L compared to other polarized macrophages. Importantly, Flt3L serum levels were reduced by effective therapy.

Conclusions

The Flt3L/CD135 axis is active in RA patients and is responsive to both prednisolone and adalimumab treatment. Conceivably, this ligand receptor pair represents a novel therapeutic target.  相似文献   

11.

Background

Glucocorticoid (GC) resistance is a major barrier in COPD treatment. We have shown increased expression of the drug efflux pump, Pgp1 in cytotoxic/pro-inflammatory lymphocytes in COPD. Loss of lymphocyte co-stimulatory molecule CD28 (lymphocyte senescence) was associated with a further increase in their pro-inflammatory/cytotoxic potential and resistance to GC. We hypothesized that lymphocyte senescence and increased Pgp1 are also associated with down-regulation of the GC receptor (GCR).

Methods

Blood was collected from 10 COPD and 10 healthy aged-matched controls. Flow cytometry was applied to assess intracellular pro-inflammatory cytokines, CD28, Pgp1, GCR, steroid binding and relative cytoplasm/nuclear GCR by CD28+ and CD28null T, NKT-like cells. GCR localization was confirmed by fluorescent microscopy.

Results

COPD was associated with increased numbers of CD28nullCD8+ T and NKT-like cells. Loss of CD28 was associated with an increased percentage of T and NKT-like cells producing IFNγ or TNFα and associated with a loss of GCR and Dex-Fluor staining but unchanged Pgp1. There was a significant loss of GCR in CD8 + CD28null compared with CD8 + CD28+ T and NKT-like cells from both COPD and controls (eg, mean ± SEM 8 ± 3% GCR + CD8 + CD28null T-cells vs 49 ± 5% GCR + CD8 + CD28+ T-cells in COPD). There was a significant negative correlation between GCR expression and IFNγ and TNFα production by T and NKT-like cells(eg, COPD: T-cell IFNγ R = −.615; ) and with FEV1 in COPD (R = −.777).

Conclusions

COPD is associated with loss of GCR in senescent CD28null and NKT-like cells suggesting alternative treatment options to GC are required to inhibit these pro-inflammatory/cytotoxic cells.  相似文献   

12.

Background

Aging and HIV infection are independently associated with excessive immune activation and impaired immune responses to vaccines, but their relationships have not been examined.

Methods

For selecting an aging population we enrolled 28 post-menopausal women including 12 healthy volunteers and 16 HIV-infected women on antiretroviral treatment with <100 HIV RNA copies/ml. Antibody titers to trivalent influenza vaccination given during the 2011-2012 season were determined before and 4 weeks after vaccination.

Results

Seroprotective influenza antibody titers (≥1:40) were observed in 31% HIV+ and 58% HIV-uninfected women pre-vaccination. Following vaccination, magnitude of antibody responses and frequency of seroprotection were lower in HIV+ (75%) than in HIV (91%) women. Plasma IL-21, the signature cytokine of T follicular helper cells (Tfh), and CD4 T cell IL-21R were upregulated with seroconversion (≥4 fold increase in antibody titer). Post-vaccine antibody responses were inversely correlated with pre-vaccination plasma TNFα levels and with activated CD4 T cells, including activated peripheral (p)Tfh. Plasma TNFα levels were correlated with activated pTfh cells (r=0.48, p=0.02), and inversely with the post-vaccination levels of plasma IL-21 (r=-0.53, p=0.02). In vitro TNFα blockade improved the ability of CD4 T cells to produce IL-21 and of B cells to secrete immunoglobulins, and addition of exogenous IL-21 to cell cultures enhanced B cell function. Higher frequencies of activated and exhausted CD8 T and B cells were noted in HIV+ women, but these markers did not show a correlation with antibody responses.

Conclusions

In aging HIV-infected and uninfected women, activated CD4 and pTfh cells may compromise influenza vaccine-induced antibody response, for which a mechanism of TNFα-mediated impairment of pTfh-induced IL-21 secretion is postulated. Interventions aimed at reducing chronic inflammation and immune activation in aging, HIV-infected patients may improve their response to vaccines.  相似文献   

13.

Introduction

Anti-citrullinated peptide antibodies are found in rheumatoid arthritis (RA) patients with HLA-DRβ chains encoding the shared epitope (SE) sequence. Citrullination increases self-antigen immunogenicity, through increased binding affinity to SE-containing HLA-DR molecules. To characterise T-cell autoreactivity towards citrullinated self-epitopes, we profiled responses of SE+ healthy controls and RA patients to citrullinated and unmodified epitopes of four autoantigens.

Methods

We compared T-cell proliferative and cytokine responses to citrullinated and native type II collagen 1,237 to 1,249, vimentin 66 to 78, aggrecan 84 to 103 and fibrinogen 79 to 91 in six SE+ healthy controls and in 21 RA patients with varying disease duration. Cytokine-producing cells were stained after incubation with peptide in the presence of Brefeldin-A.

Results

Although proliferative responses were low, IL-6, IL-17 and TNF were secreted by CD4+ T cells of SE+ RA patients and healthy controls, as well as IFNγ and IL-10 secreted by RA patients, in response to citrullinated peptides. Of the epitopes tested, citrullinated aggrecan was most immunogenic. Patients with early RA were more likely to produce IL-6 in response to no epitope or to citrullinated aggrecan, while patients with longstanding RA were more likely to produce IL-6 to more than one epitope. Cytokine-producing CD4+ T cells included the CD45RO+ and CD45RO- and the CD28+ and CD28- subsets in RA patients.

Conclusion

Proinflammatory cytokines were produced by CD4+ T cells in SE+ individuals in response to citrullinated self-epitopes, of which citrullinated aggrecan was most immunogenic. Our data suggest that the T-cell response to citrullinated self-epitopes matures and diversifies with development of RA.  相似文献   

14.

Introduction

Ankylosing Spondylitis (AS) is characterized by excessive local bone formation and concomitant systemic bone loss. Tumor necrosis factor (TNF) plays a central role in the inflammation of axial skeleton and enthesis of AS patients. Despite reduction of inflammation and systemic bone loss, AS patients treated with TNF inhibitors (TNFi) have ongoing local bone formation. The aim of this study was to assess the effect of TNFi in the differentiation and activity of osteoclasts (OC) in AS patients.

Methods

13 AS patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. 25 healthy donors were recruited as controls. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers and cytokines, in vitro OC differentiation assay and qRT-PCR for OC specific genes were performed.

Results

RANKL+ circulating lymphocytes (B and T cells) and IL-17A, IL-23 and TGF-β levels were decreased after TNFi treatment. We found no differences in the frequency of the different monocyte subpopulations, however, we found decreased expression of CCR2 and increased expression of CD62L after TNFi treatment. OC number was reduced in patients at baseline when compared to controls. OC specific gene expression was reduced in circulating OC precursors after TNFi treatment. However, when cultured in OC differentiating conditions, OC precursors from AS TNFi-treated patients showed increased activity as compared to baseline.

Conclusion

In AS patients, TNFi treatment reduces systemic pro osteoclastogenic stimuli. However, OC precursors from AS patients exposed to TNFi therapy have increased in vitro activity in response to osteoclastogenic stimuli.  相似文献   

15.

Objective

Mesenchymal progenitor cells (MPCs) are found in articular cartilage from normal controls and patients with osteoarthritis (OA). Nevertheless, the molecular mechanisms of the proliferation and differentiation of these cells remain unclear. In this study, we aimed to determine the involvement of Wnt/β-catenin signaling in regulating the proliferation and differentiation of MPCs.

Methods

MPCs were isolated from the articular cartilage of normal and OA patients. Cells were sorted by immunomagnetic cell separation. Cell proliferation capacity was evaluated using the MTT assay. Toluidine blue staining and immunostaining with anti-collagen II or anti-aggrecan antibodies were used to determine the chondrogenic differentiation capabilities of MPCs. The mRNA and protein expression of target genes were examined by quantitative real-time polymerase chain reaction and Western blotting, respectively. Knock-down of p53 expression was achieved with RNA interference.

Results

Most cells isolated from the normal and OA patients were CD105+ and CD166+ positive (Normal subjects: CD105+/CD166+, 94.6%±1.1%; OA: CD105+/CD166+, 93.5%±1.1%). MPCs derived from OA subjects exhibited decreased differentiation capabilities and enhanced Wnt/β-catenin activity. Inhibition of Wnt/β-catenin signaling promoted proliferation and differentiation, whereas activation of this pathway by treatment with rWnt3a protein decreased the proliferation and differentiation of normal MPCs. Additionally, Wnt/β-catenin signaling positively regulated p53 expression, and silencing of p53 increased proliferation and differentiation of MPCs.

Conclusions

Wnt/β-catenin regulated the proliferation and differentiation of MPCs through the p53 pathway.  相似文献   

16.

Introduction

A protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA.

Methods

Serum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions.

Results

The serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor.

Conclusions

These results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment.  相似文献   

17.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

18.

Objective

Royal College of Surgeons (RCS) rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO) on retinopathy in RCS rats.

Methods

Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg) was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR), pro-neurotrophin 3 (pro-NT3), tumour necrosis factor-α (TNFα), pigment epithelium derived factor (PEDF) and vascular endothelial growth factor-A (VEGF-A), the production of CD34+ cells and mobilization of CD34+/VEGF-R2+ cells as well as recruitment of CD34+ cells into the retina were examined after EPO treatment.

Results

RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34+ cells along with effective mobilization of CD34+/VEGF-R2+ cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina.

Conclusions

Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple mechanisms including regulation of retinal glia and microglia, inhibition of p75NTR-pro-NT3 signaling together with stimulation of production and mobilization of bone marrow derived cells.  相似文献   

19.

Introduction

The profile of immune activation markers in tuberculosis and HIV-infected patients is already known. The impact of simultaneous infections on the immune parameters is still not fully explored.

Methods

We conducted a prospective study to estimate trajectories of activated T cell subsets and the profile of anti- and pro-inflammatory cytokines in a group of HIV-TB individuals, previously naïve for HAART, recruited from a randomized clinical trial during TB treatment and first antiretroviral therapy with efavirenz. Patients were evaluated according to the immunosuppression levels at baseline as group 1 (CD4<200 cells/mm3) and group 2 (CD4>200 cells/mm3). These parameters were measured at the time of HAART initiation (started about 30 days after the onset of TB treatment) and at the follow-up visits after 30, 60, 90 and 180 days. Trajectories were estimated using least squares estimates of the coefficients of a restricted cubic spline function in time after adjusting for subject effects, bootstrapping it 500 times.

Results

Increase of CD4 T cell counts and suppression of HIV viral load were observed for all patients under HAART and TB treatment. Descendent trajectories were observed for the activated CD8+/CD38+ and CD3+/HLA-DR+ T cell subsets, and for plasma concentration of gamma- interferon (IFN-γ). Except for TNF-α and IL-2 discrete variations were observed for the other cytokines. Differences in the trajectories of these parameters were observed for groups 1 and 2. Higher values of IFN-γ, IL-2, IL-6 and IL-10 were observed for group 1 from the baseline to two months after treatment initiation, whereas reduced levels of TNF-α were observed for this group between 60 and 120 days of HAART.

Conclusion

Independent of the immunosuppression profile at baseline, HIV-TB patients under HAART were able to recover the CD4+ T cell counts, and control viral replication and immune activation parameters over time.  相似文献   

20.

Background

The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV).

Methods

Mice were infected intranasally with RSV and expression of β2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c+ CD8+ and CD11c- CD8+ T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8+ T cells was assessed by quantitative PCR.

Results

Following RSV infection CD11c+ CD8+ T cells were detectable in the lung from day 4 onwards and accounted for 45.9 ± 4.8% of CD8+ T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8+ T cells in the absence of RSV infection, its mRNA was expressed in CD8+ T cells of both naïve and RSV infected mice. CD11c+, but not CD11c-, CD8+ T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c+ CD8+ T cells were the major subset responsible for IFNγ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo.

Conclusion

CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号