首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dictyostelium discoideum MyoB is a single-headed class I myosin. Analysis of purified MyoB by SDS-PAGE indicated the presence of an approximately 9-kDa light chain. A tryptic digest of MyoB yielded a partial sequence for the light chain that exactly matched a sequence in a 73-amino acid, 8,296-Da protein (dictyBase number DDB0188713). This protein, termed MlcB, contains two EF-hand motifs and shares approximately 30% sequence identity with the N- and C-terminal lobes of calmodulin. FLAG-MlcB expressed in Dictyostelium co-immunoprecipitated with MyoB but not with the related class myosins and MyoD. Recombinant MlcB bound Ca2+ with a Kd value of 0.2 microm and underwent a Ca2+-induced change in conformation that increased alpha-helical content and surface hydrophobicity. Mutational analysis showed that the first EF-hand was responsible for Ca2+ binding. In the presence and absence of Ca2+ MlcB was a monomer in solution and bound to a MyoB IQ motif peptide with a Kd value of approximately 0.5 microm. A MyoB head-neck construct with a Ser to Glu mutation at the TEDS site bound MlcB and displayed an actin-activated Mg2+ ATPase activity that was insensitive to Ca2+. We conclude that MlcB represents a novel type of small myosin light chain that binds to IQ motifs in a manner comparable with a single lobe of a typical four-EF-hand protein.  相似文献   

2.
Crawley SW  Liburd J  Shaw K  Jung Y  Smith SP  Côté GP 《Biochemistry》2011,50(30):6579-6588
Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.  相似文献   

3.
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.  相似文献   

4.
Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca2+ but to a lesser extent (2–3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca2+ binding to the C-terminal domain of CaM with an associated increase in the Ca2+ dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca2+ binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca2+-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca2+ binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca2+-bound CaM and that although Ca2+ binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca2+ binding to the C-terminal lobe of CaM.  相似文献   

5.
Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally, EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5 undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation. Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of phagosomes. Overexpression of EhCaBP5 increases slight rate (∼20%) of phagosome formation, while suppression reduces the rate drastically (∼55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin 1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a regulatory role.  相似文献   

6.
Myosin 1c (Myo1c) plays a key role in supporting motile events that underlie cell migration, vesicle trafficking, insulin-stimulated glucose uptake and hearing. Here, we present the crystal structure of the human Myo1c motor in complex with its light chain calmodulin. Our structure reveals tight interactions of the motor domain with calmodulin bound to the first IQ motif in the neck region. Several of the calmodulin residues contributing to this interaction are also involved in Ca2 + binding. Contact residues in the motor domain are linked to the central β-sheet and the HO helix, suggesting a mechanism for communicating changes in Ca2 + binding in the neck region to the actin and nucleotide binding regions of the motor domain. The structural context and the chemical environment of Myo1c mutations that are involved in sensorineural hearing loss in humans are described and their impact on motor function is discussed. We show that a construct consisting of the motor domain of Myo1c and the first IQ motif is sufficient to establish a tight interaction with 14-3-3β (KD = 0.9 μM) and present the model of a double-headed Myo1c–14-3-3 complex. This complex has been implicated in the exocytosis of glucose transporter 4 storage vesicles during insulin-stimulated glucose uptake.  相似文献   

7.
The interaction between alpha-actinin and titin, two modular muscle proteins, is essential for sarcomere assembly. We have solved the solution structure of a complex between the calcium-insensitive C-terminal EF-hand domain of alpha-actinin-2 and the seventh Z-repeat of titin. The structure of the complex is in a semi-open conformation and closely resembles that of myosin light chains in their complexes with heavy chain IQ motifs. However, no IQ motif is present in the Z-repeat, suggesting that the semi-open conformation is a general structural solution for calcium-independent recognition of EF-hand domains.  相似文献   

8.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

9.
Zhang Y  Tan H  Lu Y  Jia Z  Chen G 《FEBS letters》2008,582(9):1355-1361
We used steered molecular dynamics (SMD) to simulate the process of Ca2+ dissociation from the EF-hand motifs of the C-terminal lobe of calmodulin. Based on an analysis of the pulling forces, the dissociation sequences and the structural changes, we show that the Ca2+-coordinating residues lose their binding to Ca2+ in a stepwise fashion. The two Ca2+ ions dissociate from the two EF-hands simultaneously, with two distinct groups among the five Ca2+-coordinating residues affecting the EF-hand conformational changes differently. These results provide new insights into the effects of Ca2+ on calmodulin conformation, from which a novel sequential mechanism of Ca2+-calmodulin dissociation is proposed.  相似文献   

10.
The contractile and enzymatic activities of myosin VI are regulated by calcium binding to associated calmodulin (CaM) light chains. We have used transient phosphorescence anisotropy to monitor the microsecond rotational dynamics of erythrosin-iodoacetamide-labeled actin with strongly bound myosin VI (MVI) and to evaluate the effect of MVI-bound CaM light chain on actin filament dynamics. MVI binding lowers the amplitude but accelerates actin filament microsecond dynamics in a Ca2+- and CaM-dependent manner, as indicated from an increase in the final anisotropy and a decrease in the correlation time of transient phosphorescence anisotropy decays. MVI with bound apo-CaM or Ca2+-CaM weakly affects actin filament microsecond dynamics, relative to other myosins (e.g., muscle myosin II and myosin Va). CaM dissociation from bound MVI damps filament rotational dynamics (i.e., increases the torsional rigidity), such that the perturbation is comparable to that induced by other characterized myosins. Analysis of individual actin filament shape fluctuations imaged by fluorescence microscopy reveals a correlated effect on filament bending mechanics. These data support a model in which Ca2+-dependent CaM binding to the IQ domain of MVI is linked to an allosteric reorganization of the actin binding site(s), which alters the structural dynamics and the mechanical rigidity of actin filaments. Such modulation of filament dynamics may contribute to the Ca2+- and CaM-dependent regulation of myosin VI motility and ATP utilization.  相似文献   

11.
IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition.  相似文献   

12.
Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin   总被引:5,自引:0,他引:5  
Isolated myosin light chain from chicken gizzard has been shown to serve as a substrate for Ca2+-activated phospholipid-dependent protein kinase. Autoradiography showed that Ca2+-activated phospholipid-dependent protein kinase phosphorylated mainly the 20,000-dalton light chain of chicken gizzard myosin. Exogenously added calmodulin had no effect on myosin light chain phosphorylation catalyzed by the enzyme. The 20,000-dalton myosin light chain, both in the isolated form and in the whole myosin form, served as the substrate for this enzyme. In contrast to the isolated myosin light chain, the light chain of whole myosin was phosphorylated to a lesser extent by the Ca2+-activated phospholipid dependent kinase. Our results suggest the involvement of phospholipid in regulating Ca2+-dependent phosphorylation of the 20,000-dalton light chain of smooth muscle myosin.  相似文献   

13.
CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain.  相似文献   

14.
Myosin V motors regulate secretion and cell division in eukaryotes. How MyoV activity is differentially regulated by essential and calmodulin light chain binding remains unclear. We have used NMR spectroscopy to compare the dynamic behavior of Mlc1p, a budding yeast essential light chain, with that of the Xenopus laevis calmodulin. Both proteins have a similar structure and bind similar target proteins but differ in the mechanism by which they interact with the myosin V IQ1. This interaction is essential for MyoV activity. Here, we show that the rigid conformation of the loop connecting the two EF-hand motifs of the Mlc1p N-lobe explains its differential ability to interact with myosin V IQ1. Moreover, we show that the maintenance of the N-lobe structure is required for the essential function of Mlc1p in vivo. These data show that the core characteristics of myosin light chain N-lobes differentiate Mlc1p and calmodulin binding capability.  相似文献   

15.
Excitatory synapses contain multiple members of the myosin superfamily of molecular motors for which functions have not been assigned. In this study we characterized the molecular determinants of myosin regulatory light chain (RLC) binding to two major subunits of the N-methyl-d-aspartate receptor (NR). Myosin RLC bound to NR subunits in a manner that could be distinguished from the interaction of RLC with the neck region of non-muscle myosin II-B (NMII-B) heavy chain; NR-RLC interactions did not require the addition of magnesium, were maintained in the absence of the fourth EF-hand domain of the light chain, and were sensitive to RLC phosphorylation. Equilibrium fluorescence spectroscopy experiments indicate that the affinity of myosin RLC for NR1 is high (30 nm) in the context of the isolated light chain. Binding was not favored in the context of a recombinant NMII-B subfragment one, indicating that if the RLC is already bound to NMII-B it is unlikely to form a bridge between two binding partners. We report that sequence similarity in the "GXXXR" portion of the incomplete IQ2 motif found in NMII heavy chain isoforms likely contributes to recognition of NR2A as a non-myosin target of the RLC. Using site-directed mutagenesis to disrupt NR2A-RLC binding in intact cells, we find that RLC interactions facilitate trafficking of NR1/NR2A receptors to the cell membrane. We suggest that myosin RLC can adopt target-dependent conformations and that a role for this light chain in protein trafficking may be independent of the myosin II complex.  相似文献   

16.
Phosphorylation of the regulatory light chain of myosin by the Ca2+/calmodulin-dependent myosin light chain kinase plays an important role in smooth muscle contraction, nonmuscle cell shape changes, platelet contraction, secretion, and other cellular processes. Smooth muscle myosin light chain kinase is also phosphorylated, and recent results from experiments designed to satisfy the criteria of Krebs and Beavo for establishing the physiological significance of enzyme phosphorylation have provided insights into the cellular regulation and function of this phosphorylation in smooth muscle. The multifunctional Ca2+/calmodulin-dependent protein kinase II phosphorylates myosin light chain kinase at a regulatory site near the calmodulin-binding domain. This phosphorylation increases the concentration of Ca2+/calmodulin required for activation and hence increases the Ca2+ concentrations required for myosin light chain kinase activity in cells. However, the concentration of cytosolic Ca2+ required to effect myosin light chain kinase phosphorylation is greater than that required for myosin light chain phosphorylation. Phosphorylation of myosin light chain kinase is only one of a number of mechanisms used by the cell to down regulate the Ca2+ signal in smooth muscle. Since both smooth and nonmuscle cells express the same form of myosin light chain kinase, this phosphorylation may play a regulatory role in cellular processes that are dependent on myosin light chain phosphorylation.  相似文献   

17.
We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I''s. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F- actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.  相似文献   

18.
Protease activated kinase I from rabbit reticulocytes has been shown to phosphorylate the P-light chain of myosin light chains isolated from rabbit skeletal muscle. The enzyme is not activated by Ca2+ and calmodulin or phospholipids. Protease activated kinase I is not inhibited by trifluoperazine at concentrations up to 200 μM or by the antibody to the Ca2+, calmodulin-dependent myosin light chain kinase from rabbit skeletal muscle. Two-dimensional peptide mapping of chymotryptic digests of myosin P-light chain show the site phosphorylated by the protease activated kinase is different from that phosphorylated by the Ca2+, calmodulin-dependent myosin light chain kinase.  相似文献   

19.
Human calmodulin-like protein (CLP) is an epithelial-specific Ca(2+)-binding protein whose expression is strongly down-regulated in cancers. Like calmodulin, CLP is thought to regulate cellular processes via Ca(2+)-dependent interactions with specific target proteins. Using gel overlays, we identified a approximately 210-kDa protein binding specifically and in a Ca(2+)-dependent manner to CLP, but not to calmodulin. Yeast two-hybrid screening yielded a CLP-interacting clone encoding the three light chain binding IQ motifs of human "unconventional" myosin X. Pull-down experiments showed CLP binding to the IQ domain to be direct and Ca(2+)-dependent. CLP interacted strongly with IQ motif 3 (K(d) approximately 0.5 nm) as determined by surface plasmon resonance. Epitope-tagged myosin X was localized preferentially at the cell periphery in MCF-7 cells, and CLP colocalized with myosin X in these cells. Myosin X was able to coprecipitate CLP and, to a lesser extent, calmodulin from transfected COS-1 cells, indicating that CLP is a specific light chain of myosin X in vivo. Because unconventional myosins participate in cellular processes ranging from membrane trafficking to signaling and cell motility, myosin X is an attractive CLP target. Altered myosin X regulation in (tumor) cells lacking CLP may have as yet unknown consequences for cell growth and differentiation.  相似文献   

20.
Each heavy chain of dimeric chick brain myosin V (BMV) has a neck domain consisting of six IQ motifs with different amino acid sequences. The six IQ motifs form binding sites for five calmodulin (CaM) molecules and one essential light chain (either 17 or 23 kDa). When the calcium concentration is high, a small fraction of the 10 total CaM molecules dissociates from one molecule of BMV, resulting in loss of actin-based motor activity. At low Ca2+ concentrations, two molecules of exogenous CaM associate with one molecule of CaM-released BMV. This suggests that there is a single specific IQ motif responsible for the calcium-induced dissociation of CaM. In this study, we identify the specific IQ motif to be IQ2, the second IQ motif when counted from the N-terminal end of the neck domain. In addition, we showed that the essential light chains do not reside on IQ1 and IQ2. These findings were derived from proteolysis of BMV at high Ca2+ concentrations specifically at the neck region and SDS-PAGE analyses of the digests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号