首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A major challenge in neurophysiology has been to characterize the response properties and function of the numerous inhibitory cell types in the cerebral cortex.We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex using a method developed by Lima and colleagues1. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. This technique – termed “PINP”, or Photostimulation-assisted Identification of Neuronal Populations – can be implemented with standard extracellular recording equipment. It can serve as an inexpensive and accessible alternative to calcium imaging or visually-guided patching, for the purpose of targeting extracellular recordings to genetically-identified cells. Here we provide a set of guidelines for optimizing the method in everyday practice. We refined our strategy specifically for targeting parvalbumin-positive (PV+) cells, but have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons.  相似文献   

2.
We present a computational, biophysical model of neuron-astrocyte-vessel interaction. Unlike other cells, neurons convey “hunger” signals to the vascular network via an intervening layer of glial cells (astrocytes); vessels dilate and release glucose which fuels neuronal firing. Existing computational models focus on only parts of this loop (neuron→astrocyte→vessel→neuron), whereas the proposed model describes the entire loop. Neuronal firing causes release of a neurotransmitter like glutamate which triggers release of vasodilator by astrocytes via a cascade of biochemical events. Vasodilators released from astrocytic endfeet cause blood vessels to dilate and release glucose into the interstitium, part of which is taken up by the astrocyticendfeet. Glucose is converted into lactate in the astrocyte and transported into the neuron. Glucose from the interstitium and lactate (produced from glucose) influx from astrocyte are converted into ATP in the neuron. Neuronal ATP is used to drive the Na+/K+ATPase pumps, which maintain ionic gradients necessary for neuronal firing. When placed in the metabolic loop, the neuron exhibits sustained firing only when the stimulation current is more than a minimum threshold. For various combinations of initial neuronal [ATP] and external current, the neuron exhibits a variety of firing patterns including sustained firing, firing after an initial pause, burst firing etc. Neurovascular interactions under conditions of constricted vessels are also studied. Most models of cerebral circulation describe neurovascular interactions exclusively in the “forward” neuron→vessel direction. The proposed model indicates possibility of “reverse” influence also, with vasomotion rhythms influencing neural firing patterns. Another idea that emerges out of the proposed work is that brain''s computations may be more comprehensively understood in terms of neuro-glial-vascular dynamics and not in terms of neural firing alone.  相似文献   

3.
Endogenous “stem cell niche” (SCN) accompanying vessels contains immune system components which in vivo determine differentiation of multi potent stem cells toward proper cell types in given tissue. Combinations of sex steroids may represent novel chemical approach for neuronal areas of regenerative medicine, since they cause transformation of vascular smooth muscle stem cells into differentiating neuronal cells. Circulating sex steroids are present during pregnancy and can be utilized where needed, when various embryonic/fetal tissues develop from their stem cells. Utilization of induced regeneration of tissues (regenerative medicine) is expected being more effective in sudden failures of younger individuals carrying intact SCN, as compared to established chronic disorders caused by SCN alteration. An essential component of SCN are monocyte-derived cells exhibiting tissue-specific “stop effect” (SE) preventing, for instance, an aging of neuronal cells. Its alteration causes that implantation of neuronal stem cells will also result in their differentiation toward aging cells. When we repair the SE by supply of circulating mononuclear cells from young healthy individuals, we may be able to provide novel regenerative treatments of age-induced neural diseases by sex steroid combinations. Questions regarding some age-induced body alterations are also addressed.  相似文献   

4.
Differentiation of pluripotent and lineage restricted stem cells such as neural stem cells (NSCs) was studied on conducting substrates of various nature without perturbation of the genome with exogenous genetic material or chemical stimuli. Primary mouse adult neural stem cells (NSCs) and P19 pluripotent embryonal (P19 EC) carcinoma cells were used. Expression levels of neuronal markers β-III-tubulin and neurofilament were evaluated by immunochemistry and flow cytometry. It was shown that the ability of the substrate to induce differentiation directly correlated with its conductivity. Conducting substrates (conducting oxides or doped π-conjugated organic polymers) with different morphology, structure, and conductivity mechanisms all promoted differentiation of NSC and P19 cells into neuronal lineage to a similar degree without use of additional factors such as poly-l-ornithine coating or retinoic acid, as verified by their morphology and upregulation of the neuronal markers but not astrocyte marker GFAP. However, substrates with low conductance below ca. 10?4 S cm?2 did not show this ability. Morphology of differentiating cells was visualized by atomic force microscopy. NSCs cells increased β-III-tubulin expression by 95% and P19 cells by over 30%. Our results suggest that the substrate conductivity is a key factor governing the cell fate. Differentiation of P19 cells into neuronal lineage on conducting substrates was attributed to downregualtion of Akt signaling pathway and increase in expression of dual oxidase 1 (DUOX 1).  相似文献   

5.
6.
Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non‐neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons (“material transfer”) was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open‐end NT‐like processes. These processes permit the transfer of cytoplasmic and membrane‐bound molecules in culture and after transplantation and can mediate gain‐of‐function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT‐like processes forming between sensory neurons in culture and in vivo.  相似文献   

7.
Growth yields of bacteria on selected organic compounds   总被引:7,自引:4,他引:3       下载免费PDF全文
Cell yields were determined for two bacterial soil isolants grown aerobically in minimal media on a variety of synthetic organic compounds. 1-Dodecanol, benzoic acid, phenylacetic acid, phenylglyoxylic acid, and diethylene, triethylene, and tetraethylene glycols were tested. Two “biochemicals,” succinate and acetate, were also tested for comparison. Yields were calculated on the basis of grams of cells obtained per mole of substrate utilized, gram atom of carbon utilized, mole of oxygen consumed, and equivalent of “available electrons” in the substrates. This latter value appears to be nearly constant at 3 g of cells per equivalent of “available electrons.” Yields predicted on this basis for other bacteria and for yeasts on other substrates are in fair agreement with reported values.  相似文献   

8.
Embryonic stem (ES) cell differentiation in specific cell lineages is a major issue in cell biology particularly in regenerative medicine. Differentiation is usually achieved by using biochemical factors and it is not clear whether mechanical properties of the substrate over which cells are grown can affect proliferation and differentiation. Therefore, we produced patterns in polydimethylsiloxane (PDMS) consisting of groove and pillar arrays of sub-micrometric lateral resolution as substrates for cell cultures. We analyzed the effect of different nanostructures on differentiation of ES-derived neuronal precursors into neuronal lineage without adding biochemical factors. Neuronal precursors adhered on PDMS more effectively than on glass coverslips. We demonstrated that neuronal yield was enhanced by increasing pillars height from 35 to 400 nm. On higher pillar neuronal differentiation reaches ~80% 96 h after plating and the largest differentiation enhancement of pillars over flat PDMS was observed during the first 6 h of culture. We conclude that PDMS nanopillars accelerate and increase neuronal differentiation.  相似文献   

9.
Recently, we proposed a new mechanism for understanding the Warburg effect in cancer metabolism. In this new paradigm, cancer-associated fibroblasts undergo aerobic glycolysis, and extrude lactate to “feed” adjacent cancer cells, which then drives mitochondrial biogenesis and oxidative mitochondrial metabolism in cancer cells. Thus, there is vectorial transport of energy-rich substrates from the fibroblastic tumor stroma to anabolic cancer cells. A prediction of this hypothesis is that cancer-associated fibroblasts should express MCT4, a mono-carboxylate transporter that has been implicated in lactate efflux from glycolytic muscle fibers and astrocytes in the brain. To address this issue, we co-cultured MCF7 breast cancer cells with normal fibroblasts. Interestingly, our results directly show that breast cancer cells specifically induce the expression of MCT4 in cancer-associated fibroblasts; MCF7 cells alone and fibroblasts alone, both failed to express MCT4. We also show that the expression of MCT4 in cancer-associated fibroblasts is due to oxidative stress, and can be prevented by pre-treatment with the anti-oxidant N-acetyl-cysteine. In contrast to our results with MCT4, we see that MCT1, a transporter involved in lactate uptake, is specifically upregulated in MCF7 breast cancer cells when co-cultured with fibroblasts. Virtually identical results were also obtained with primary human breast cancer samples. In human breast cancers, MCT4 selectively labels the tumor stroma, e.g., the cancer-associated fibroblast compartment. Conversely, MCT1 was selectively expressed in the epithelial cancer cells within the same tumors. Functionally, we show that overexpression of MCT4 in fibroblasts protects both MCF7 cancer cells and fibroblasts against cell death, under co-culture conditions. Thus, we provide the first evidence for the existence of a stromal-epithelial lactate shuttle in human tumors, analogous to the lactate shuttles that are essential for the normal physiological function of muscle tissue and brain. These data are consistent with the “reverse Warburg effect,” which states that cancer-associated fibroblasts undergo aerobic glycolysis, thereby producing lactate, which is utilized as a metabolic substrate by adjacent cancer cells. In this model, “energy transfer” or “metabolic-coupling” between the tumor stroma and epithelial cancer cells “fuels” tumor growth and metastasis, via oxidative mitochondrial metabolism in anabolic cancer cells. Most importantly, our current findings provide a new rationale and novel strategy for anti-cancer therapies, by employing MCT inhibitors.Key words: caveolin-1, oxidative stress, pseudohypoxia, lactate shuttle, MCT1, MCT4, metabolic coupling, tumor stroma, predictive biomarker, SLC16A1, SLC16A3, monocarboxylic acid transporter  相似文献   

10.
Studies using genetic and biochemical probes have suggested that mouse sperm surface galactosyltransferases may participate during fertilization by binding N- acetylglucosamine (GlcNAc) residues in the egg zona pellucida. In light of these results, we examined sperm surface galactosyltransferase activity during in vitro capacitation to determine whether changes in enzymatic activity correlated with fertilizing ability. Results show that surface galactosyltransferases on uncapacitated sperm was preferentially loaded with poly N-acetyllactosamine substrates. As a consequence of capacitation in Ca(++)-containing medium, these polylactosaminyl substrates are spontaneously released from the sperm surface, thereby exposing the sperm galactosyltransferase for binding to the zona pellucida. Sperm capacitation can be mimicked, in the absence of Ca(++), either by washing sperm in Ca(++)-free medium, or by pretreating sperm with antiserum that reacts with the galactosyltransferase substrate. In both instances, sperm galgactosylation of endogenous polylactosaminyl substrates is reduced, coincident with increased galactosylation of exogenous GlcNAc, and increased binding to the zona pellucida. Binding of capacitated sperm to the egg can be inhibited by pronase-digested high molecular weight polyactosaminyl glycoside extracted from epidymal fluids or from undifferentiated F9 embryonal carninoma cells. Thus, these glycosides function as “decapacitation factors” when added back to in vitro fertilization assays. These glycoside “decapacitation factors” inhibit sperm-egg binding by competeing for the sperm surface galactosyltransferase, since (a) they are galactosylated by sperm in the presence of UDP[(3)H]galactose, and (b) enzymatic removal of terminal GlcNAc residues reduces “decapacitation factio” competition. On the other hand “conventional” low molecular weight glycosides, isolated from either epididymal fluid or differentiated F9 cells, fail to inhibit capacitated sperm binding to the zona pellucida. These results define a molecular mechanism for one aspect of sperm capacitation, and help explain why removal of “decapacitation factos” is a necessary prerequisite for sperm binding to the zona pellucida.  相似文献   

11.
Signaling pathways orchestrated by PI3K/Akt, Raf/Mek/Erk and Wnt/β-catenin are known to play key roles in the self-renewal and differentiation of pluripotent stem cells. The serine/threonine protein kinase Gsk3β has roles in all three pathways, making its exact function difficult to decipher. Consequently, conflicting reports have implicated Gsk3β in promoting self-renewal, while others suggest that it performs roles in the activation of differentiation pathways. Different thresholds of Gsk3β activity also have different biological effects on pluripotent cells, making this situation even more complex. Here, we describe a further level of complexity that is most apparent when comparing “naïve” murine and “primed” human pluripotent stem cells. In naïve cells, Gsk3β activity is restrained by PI3K/Akt, but when released from inhibitory signals it antagonizes self-renewal pathways by targeting pluripotency factors such as Myc and Nanog. This situation also applies in primed cells, but, in addition, a separate pool of Gsk3β is required to suppress canonical Wnt signaling. These observations suggest that different Gsk3β-protein complexes shift the balance between naïve and primed pluripotent cells and identify fundamental differences in their cell signaling. Altogether, these findings have important implications for the mechanisms underpinning the establishment of different pluripotent cell states and for the control of self-renewal and differentiation.  相似文献   

12.
Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. “Hippo” pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with “Mob” coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1–Mob2, to our knowledge the first of an NDR/LATS kinase–Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1’s regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides.  相似文献   

13.
Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the “innate nature” of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the “unconventional” and the “conventional” memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.  相似文献   

14.

Background

Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, “normal-like”, and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity.

Methodology/Principal Findings

A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and “normal-like” tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice.

Conclusions/Significance

Luminal A and “normal-like” breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.  相似文献   

15.
Neuronal cell lines are important model systems to study mechanisms of neurodegenerative diseases. One example is the Lund Human Mesencephalic (LUHMES) cell line, which can differentiate into dopaminergic‐like neurons and is frequently used to study mechanisms of Parkinson's disease and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified with selected neuronal markers, but little is known about the proteome‐wide protein abundance changes during differentiation. Using mass spectrometry and label‐free quantification (LFQ), the proteome of differentiated and undifferentiated LUHMES cells and of primary murine midbrain neurons are compared. Neuronal differentiation induced substantial changes of the LUHMES cell proteome, with proliferation‐related proteins being strongly down‐regulated and neuronal and dopaminergic proteins, such as L1CAM and α‐synuclein (SNCA) being up to 1,000‐fold up‐regulated. Several of these proteins, including MAPT and SYN1, may be useful as new markers for experimentally validating neuronal differentiation of LUHMES cells. Primary midbrain neurons are slightly more closely related to differentiated than to undifferentiated LUHMES cells, in particular with respect to the abundance of proteins related to neurodegeneration. In summary, the analysis demonstrates that differentiated LUHMES cells are a suitable model for studies on neurodegeneration and provides a resource of the proteome‐wide changes during neuronal differentiation. (ProteomeXchange identifier PXD020044).  相似文献   

16.
It has been reported that rat bone marrow stromal cells (BMSCs) are differentiated into neuronal cells by administration of 2-mercaptoethanol [Woodbury et al (2000) J Neurosci Res 61:364–370]. In this study, we examined the effects of various sulfhydryl (SH) compounds on the differentiation of BMSCs obtained from rat femurs. Neuronal differentiation was detected morphologically and immunocytochemically. It was found that the cells treated with reduced glutathione (GSH) apparently differentiated into neurons, showing extensive processes, and expressing neuron-specific enolase and microtubule-associated protein 2. Glutathione monoethyl ester (GEE), which increased the cellular GSH content, showed no effect on the expression of neuronal markers. It is concluded that the neural differentiation of BMSCs occurs by the administration of GSH. It was suggested that extracellular and not intracellular GSH have effects on the induction of the neuronal differentiation of BMSCs.  相似文献   

17.
The nuclear matrix is defined as the insoluble framework of the nucleus and has been implicated in the regulation of gene expression, the cell cycle, and nuclear structural integrity via linkage to intermediate filaments of the cytoskeleton. We have discovered a novel nuclear matrix protein, NRP/B (nuclear restricted protein/brain), which contains two major structural elements: a BTB domain–like structure in the predicted NH2 terminus, and a “kelch motif” in the predicted COOH-terminal domain. NRP/B mRNA (5.5 kb) is predominantly expressed in human fetal and adult brain with minor expression in kidney and pancreas. During mouse embryogenesis, NRP/B mRNA expression is upregulated in the nervous system. The NRP/B protein is expressed in rat primary hippocampal neurons, but not in primary astrocytes. NRP/B expression was upregulated during the differentiation of murine Neuro 2A and human SH-SY5Y neuroblastoma cells. Overexpression of NRP/B in these cells augmented neuronal process formation. Treatment with antisense NRP/B oligodeoxynucleotides inhibited the neurite development of rat primary hippocampal neurons as well as the neuronal process formation during neuronal differentiation of PC-12 cells. Since the hypophosphorylated form of retinoblastoma protein (p110RB) is found to be associated with the nuclear matrix and overexpression of p110RB induces neuronal differentiation, we investigated whether NRP/B is associated with p110RB. Both in vivo and in vitro experiments demonstrate that NRP/B can be phosphorylated and can bind to the functionally active hypophosphorylated form of the p110RB during neuronal differentiation of SH-SY5Y neuroblastoma cells induced by retinoic acid. Our studies indicate that NRP/B is a novel nuclear matrix protein, specifically expressed in primary neurons, that interacts with p110RB and participates in the regulation of neuronal process formation.  相似文献   

18.
For permanent secondary growth in plants, cell proliferation and differentiation should be strictly controlled in the vascular meristem consisting of (pro)cambial cells. A peptide hormone tracheary element differentiation inhibitory factor (TDIF) functions to inhibit xylem differentiation, while a plant hormone brassinosteroid (BR) promotes xylem differentiation in (pro)cambial cells. However, it remains unclear how TDIF and BR cooperate to regulate xylem differentiation for the proper maintenance of the vascular meristem. In this study, I developed an easy evaluation method for xylem differentiation frequency in a vascular induction system Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) by utilizing a xylem-specific luciferase reporter line. In this quantitative system, TDIF suppressed and BR promoted xylem differentiation in a dose-dependent manner, respectively. Moreover, simultaneous treatment of TDIF and BR with (pro)cambial cells revealed that they can cancel their each other’s effect on xylem differentiation, suggesting a competitive relationship between TDIF and BR. Thus, mutual inhibition of “ON” and “OFF” signal enables the fine-tuned regulation of xylem differentiation in the vascular meristem.  相似文献   

19.
Enzymatic catalysis of biochemical reactions is essential to all living systems. The “lock and key” and “induced fit” models were early contributions to our understanding of the mechanisms involved in the reaction between an enzyme and its substrate. However, whether a given substrate-induced conformation is rigid or remains flexible has not yet been determined. By measuring the enzyme activity and intrinsic fluorescence of a nonspecific Eisenia fetida protease-I with different chromogenic substrates, we show that in subsequent reactions of protease with substrates, both the “lock and key” and “induced fit” mechanisms are used depending on the degree of conformational change required. Chromozym-Th- or chromosym-Ch-induced protease conformations were unable to bind chromozym-U. The chromosym-U-induced protease conformation remained flexible and could be further induced by chromozym-Th and chromozym-Ch. When low concentrations of guanidine HCl were used to disturb the conformation of the enzyme, only small changes in intrinsic fluorescence of the chromozym-Th-induced protease were detected, in contrast to the native enzyme whose intrinsic fluorescence markedly increased. This indicates that the substrate-induced enzyme was relatively rigid compared with the native protease. Utilizing a lock and key mechanism for secondary substrate reactions may have adaptive value in that it facilitates high efficiency in enzymatic reactions.  相似文献   

20.
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号