首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   

2.
The polo-like kinase family plays a vital role in many cell cycle related events. The family includes mammalian Plk1, Snk (Plk2), and Fnk/Prk (Plk3), Xenopus laevis Plx1, Drosophila polo, fission yeast Plo1, and budding yeast Cdc5. These enzymes, in addition to a conserved kinase domain at the N-terminus, have highly conserved sequences called polo-box(s) in the non-catalytic C-terminal domain.1 Genetic and biochemical experiments with several different organisms have documented that polo-like kinases are involved in many aspects of the cell cycle, such as activation of Cdc2, centrosome assembly and maturation, activation of the anaphase-promoting complex (APC) during the metaphase-anaphase transition, and cytokinesis.(1-3)  相似文献   

3.
目的:构建人Polo样激酶1(Plk1)活性缺失突变体及结构域突变体的真核表达载体,并在293细胞中表达。方法:用二次PCR方法扩增Plk1基因并点突变,将82位赖氨酸突变为精氨酸,定向克隆到pcDNA3-Flag载体中;用普通PCR方法扩增Plk1激酶区域及Polo盒区域(PBD)基因,定向克隆到pcDNA3-Flag载体中;将上述质粒转染293细胞进行瞬时表达,Western印迹检测Plk1蛋白的表达。结果:构建了Flag-Plk1(K82R)、Flag-Plk1KD、Flag-Plk1PBD真核表达质粒,在293细胞中均可有效表达,蛋白相对分子质量分别为68×103、45×103、31×103。结论:在293细胞中表达了Flag-Plk1(K82R)、Flag-Plk1KD、Flag-Plk1PBD蛋白,有助于进一步探究Plk1对底物的功能。  相似文献   

4.
肝细胞癌(hepatocellular carcinoma,HCC)是全球第五大癌症并成为癌症死亡的主要原因,传统治疗早期肝癌取得了一定的进展,但是癌症的复发、转移和耐药仍未得到根本解决,这些现象可通过癌症干细胞理论(cancer stem cell,CSC)进行解释.本研究通过悬浮富集培养的方法,获得了MHCC-97H细胞的三维立体球细胞(sphere cell),并检测其干细胞特性,通过删除5型腺病毒的E1A CR2区域24 bp碱基,并用Wnt活性转录元件TCF/TEF调控E1A基因表达,同时插入抗癌基因TSLC1,得到了双靶向溶瘤腺病毒Ad.wnt-E1A(△24 bp)-TSLC1,通过MTT、结晶紫染色实验、Hoechst、细胞划痕、蛋白质印迹技术、Transwell及免疫荧光技术检测重组病毒对肝癌类干细胞的EMT(epithelial-mesenchymal transition)转化、杀伤、凋亡以及迁移的作用.结果表明,悬浮富集培养的MHCC-97H sphere细胞具有自我更新、分化能力、静息性以及耐药性,高表达肝癌干细胞表面标志物(如CD133等),重组病毒处理后表现出明显的杀伤效果及抑制细胞迁移与侵袭的特性,靶向抑制MHCC-97H sphere细胞能力更强(P0.001),且重组病毒能有效诱导肝癌类干细胞通过caspase途径发生凋亡.因此,重组病毒Ad.wnt-E1A(△24 bp)-TSLC1有可能成为靶向肝癌干细胞的治疗药物,具有一定的临床应用前景.  相似文献   

5.
6.

Background

Polo-like kinase-1 (Plk1) plays a crucial role in cell proliferation and the inhibition of Plk1 has been considered as a potential target for specific inhibitory drugs in anti-cancer therapy. Several research groups have identified peptide-based inhibitors that target the polo-box domain (PBD) of Plk1 and bind to the protein with high affinity in in vitro assays. However, inadequate proteolytic resistance and cell permeability of the peptides hinder the development of these peptide-based inhibitors into novel therapeutic compounds.

Methodology/Principal Findings

In order to overcome the shortcomings of peptide-based inhibitors, we designed and synthesized small molecule inhibitors. Among these molecules, bg-34 exhibited a high binding affinity for Plk1-PBD and it could cross the cell membrane in its unmodified form. Furthermore, bg-34-dependent inhibition of Plk1-PBD was sufficient for inducing apoptosis in HeLa cells. Moreover, modeling studies performed on Plk1-PBD in complex with bg-34 revealed that bg-34 can interact effectively with Plk1-PBD.

Conclusion/Significance

We demonstrated that the molecule bg-34 is a potential drug candidate that exhibits anti-Plk1-PBD activity and possesses the favorable characteristics of high cell permeability and stability. We also determined that bg-34 induced apoptotic cell death by inhibiting Plk1-PBD in HeLa cells at the same concentration as PEGylated 4j peptide, which can inhibit Plk1-PBD activity 1000 times more effectively than bg-34 can in in vitro assays. This study may help to design and develop drug-like small molecule as Plk1-PBD inhibitor for better therapeutic activity.  相似文献   

7.
Glioblastoma multiforme (GBM) is a highly lethal brain tumor. Due to resistance to current therapies, patient prognosis remains poor and development of novel and effective GBM therapy is crucial. Glioma stem cells (GSCs) have gained attention as a therapeutic target in GBM due to their relative resistance to current therapies and potent tumor-initiating ability. Previously, we identified that the mitotic kinase maternal embryonic leucine-zipper kinase (MELK) is highly expressed in GBM tissues, specifically in GSCs, and its expression is inversely correlated with the post-surgical survival period of GBM patients. In addition, patient-derived GSCs depend on MELK for their survival and growth both in vitro and in vivo. Here, we demonstrate evidence that the role of MELK in the GSC survival is specifically dependent on its kinase activity. With in silico structure-based analysis for protein-compound interaction, we identified the small molecule Compound 1 (C1) is predicted to bind to the kinase-active site of MELK protein. Elimination of MELK kinase activity was confirmed by in vitro kinase assay in nano-molar concentrations. When patient-derived GSCs were treated with C1, they underwent mitotic arrest and subsequent cellular apoptosis in vitro, a phenotype identical to that observed with shRNA-mediated MELK knockdown. In addition, C1 treatment strongly induced tumor cell apoptosis in slice cultures of GBM surgical specimens and attenuated growth of mouse intracranial tumors derived from GSCs in a dose-dependent manner. Lastly, C1 treatment sensitizes GSCs to radiation treatment. Collectively, these data indicate that targeting MELK kinase activity is a promising approach to attenuate GBM growth by eliminating GSCs in tumors.  相似文献   

8.
Malignant gliomas are the most aggressive forms of?brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs) that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138) as a molecular signature of GSCs and demonstrate a vital role for miR-138 in?promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in?vitro and impedes tumorigenesis in?vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.  相似文献   

9.
Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.  相似文献   

10.
骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)具有很强的诱导间充质干细胞定向成骨分化的能力.但对于其所涉及的相关分子机理了解并不深入.利用BMP9重组腺病毒感染间充质干细胞,Western blot检测ERK1/2激酶的磷酸化,ERK1/2的特异性抑制剂PD98059阻断ERK1/2活性,或以RNA干扰抑制ERK1/2表达,通过体外细胞实验和体内动物实验,初步分析和揭示ERK1/2对于BMP9诱导的间充质干细胞成骨分化的调控作用及其可能机制.结果发现:BMP9可以促进ERK1/2激酶的磷酸化,ERK1/2抑制剂PD98059可增强由BMP9诱导的碱性磷酸酶(alkaline phosphatase,ALP)活性、骨桥蛋白(osteopontin,OPN)表达和钙盐沉积,并促进由BMP9诱导的Runx2基因的表达和转录活性,以及Smad经典途径的活化;而RNA干扰导致ERK1/2基因沉默同样也可进一步促进BMP9诱导的ALP活性和钙盐沉积,并促进BMP9诱导的间充质干细胞在裸鼠皮下异位成骨.因此,BMP9可以促进ERK1/2蛋白激酶的活化,而阻断ERK1/2蛋白激酶可进一步增强BMP9诱导的成骨分化,ERK1/2极可能对于BMP9诱导的间充质干细胞成骨分化起着负向调控作用.  相似文献   

11.
12.
Alveolar echinococcosis (AE) is a severe chronic helminthic disease caused by the intrahepatic tumor-like growth of the metacestode of Echinococcus multilocularis. Metacestodes are fluid-filled, asexually proliferating vesicles, which are entirely covered by the laminated layer, an acellular carbohydrate-rich surface structure that protects the parasite from immunological and physiological reactions on part of the host. The E. multilocularis metacestode has acquired specific means of manipulating and using the immunological host response to its own advantage. These include the expression of distinct immunoregulatory parasite molecules that manipulate and interfere in the functional activity of macrophages and T cells. Recent research findings have led to a better understanding of the protein- and glycoprotein composition of the laminated layer and the E/S fraction of the metacestode, including Em2- and Em492-antigens, two metacestode antigen fractions that exhibit immunosuppressive or -modulatory properties. Understanding of the events taking place at the host-parasite interface is the key for development of novel immuno-therapeutical and/or chemotherapeutical tools.  相似文献   

13.
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.  相似文献   

14.

Background

Targeting stem cells holds great potential for studying the embryonic stem cell and development of stem cell-based regenerative medicine. Previous studies demonstrated that nanoparticles can serve as a robust platform for gene delivery, non-invasive cell imaging, and manipulation of stem cell differentiation. However specific targeting of embryonic stem cells by peptide-linked nanoparticles has not been reported.

Methodology/Principal Findings

Here, we developed a method for screening peptides that specifically recognize rhesus macaque embryonic stem cells by phage display and used the peptides to facilitate quantum dot targeting of embryonic stem cells. Through a phage display screen, we found phages that displayed an APWHLSSQYSRT peptide showed high affinity and specificity to undifferentiated primate embryonic stem cells in an enzyme-linked immunoabsorbent assay. These results were subsequently confirmed by immunofluoresence microscopy. Additionally, this binding could be completed by the chemically synthesized APWHLSSQYSRT peptide, indicating that the binding capability was specific and conferred by the peptide sequence. Through the ligation of the peptide to CdSe-ZnS core-shell nanocrystals, we were able to, for the first time, target embryonic stem cells through peptide-conjugated quantum dots.

Conclusions/Significance

These data demonstrate that our established method of screening for embryonic stem cell specific binding peptides by phage display is feasible. Moreover, the peptide-conjugated quantum dots may be applicable for embryonic stem cell study and utilization.  相似文献   

15.
The in vitro differentiation of human induced pluripotent stem cells (hiPSC) to generate specific types of cells is inefficient, and the remaining undifferentiated cells may form teratomas. This raises safety concerns for clinical applications of hiPSC-derived cellular products. To improve the safety of hiPSC, we attempted to site-specifically insert a herpes simplex virus 1 thymidine kinase (HSV1-TK) suicide gene at the endogenous OCT4 (POU5F1) locus of hiPSC. Since the endogenous OCT4 promoter is active in undifferentiated cells only, we speculated that the HSV1-TK suicide gene will be transcribed in undifferentiated cells only and that the remaining undifferentiated cells can be depleted by treating them with the prodrug ganciclovir (GCV) prior to transplantation. To insert the HSV1-TK gene at the OCT4 locus, we cotransfected hiPSC with a pair of plasmids encoding an OCT4-specific zinc finger nuclease (ZFN) and a donor plasmid harboring a promoter-less transgene cassette consisting of HSV1-TK and puromycin resistance gene sequences, flanked by OCT4 gene sequences. Puromycin resistant clones were established and characterized regarding their sensitivity to GCV and the site of integration of the HSV1-TK/puromycin resistance gene cassette. Of the nine puromycin-resistant iPSC clones analyzed, three contained the HSV1-TK transgene at the OCT4 locus, but they were not sensitive to GCV. The other six clones were GCV-sensitive, but the TK gene was located at off-target sites. These TK-expressing hiPSC clones remained GCV sensitive for up to 90 days, indicating that TK transgene expression was stable. Possible reasons for our failed attempt to selectively target the OCT4 locus are discussed.  相似文献   

16.
17.
18.
Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis.  相似文献   

19.
RNA干扰技术抑制Polo-like激酶1表达对A549细胞的影响   总被引:2,自引:0,他引:2  
Polo-like激酶1(Plk1)是参与细胞周期调控的重要分子,已在多种肿瘤中检测到Plk1的高表达,并发现与肿瘤细胞的增殖和预后密切关联.为明确Plk1在肺癌细胞系A549细胞增殖和周期运行中的作用,采用RNA干扰技术,构建能产生siRNA的质粒载体psiRNA-hH1-Plk1并导入A549细胞中.采用RT-PCR检测Plk1mRNA表达的变化,Western印迹检测Plk1、细胞周期蛋白B1、p53蛋白的表达变化,流式细胞术分析细胞周期变化和凋亡;免疫荧光染色检测α微管蛋白的表达.以此观察RNA干扰能否有效抑制Plk1的表达水平,以及抑制后对A549细胞生长的影响.结果表明,psiRNA-hH1-Plk1质粒能特异性地抑制Plk1基因的表达并使其活性下降,细胞周期蛋白B1及p53蛋白的表达水平升高,微管聚集障碍或形成单极的纺锤体,A549细胞增殖减慢,出现G2/M期阻滞并存在细胞凋亡.针对Plk1基因的RNA干扰有望用于肿瘤的基因治疗.  相似文献   

20.
《Translational oncology》2020,13(3):100741
Acquired resistance and intrinsic to sorafenib therapy represents a major hurdle in improving the management of advanced hepatocellular carcinoma (HCC), which has been recently shown to be associated with the emergence of liver cancer stem cells (CSCs). However, it remains largely unknown whether and how histone posttranslational modifications, especially H3K27me3, are causally linked to the maintenance of self-renewal ability in sorafenib-resistant HCC. Here, we found that NOTCH1 signaling was activated in sorafenib-resistant HCC cells and NOTCH1 activation conferred hepatoma cells sorafenib resistance through enhanced self-renewal and tumorigenecity. Besides, the overexpression of EZH2 was required for the emergence of cancer stem cells following prolonged sorafenib treatment. As such, modulating EZH2 expression or activity suppressed activation of NOTCH1 pathway by elevating the expression of NOTCH1-related microRNAs, hsa-miR-21-5p and has-miR-26a-1-5p, via H3K27me3, and consequently weakened self-renewal ability and tumorigenecity and restored the anti-tumor effects of sorafenib. Overall, our results highlight the role of EZH2/NICD1 axis, and also suggest that EZH2 and NOTCH1 pathway are rational targets for therapeutic intervention in sorafenib-resistant HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号