首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐敏  边红枫  徐丽  陈智  何念鹏 《生态学报》2020,40(5):1562-1571
降水事件引起土壤短时间内释放大量CO_2的现象常称为降水脉冲效应。降水事件发生后,由于水分和养分可获得性快速提升使土壤微生物呼吸速率快速升高至正常水分状况的数倍,从而导致土壤CO_2大量释放并一定程度上影响着生态系统碳循环过程和土壤碳平衡,尤其在干旱或半干旱地区。利用自主研发的能快速测定土壤微生物呼吸速率的装置,对内蒙古三类典型草原(草甸草原、典型草原和荒漠草原)土壤分别开展土壤复湿实验(60%饱和含水量),并采用高频测定(48 h测定288次)。在土壤复湿后在所有温带草地类型中均发生了明显的脉冲效应,降水脉冲过程中单位有机质(土壤有机碳,SOC)最大呼吸速率(R_(SOC-max))整体表现为荒漠草原(1.59 mg C g~(-1) SOC h~(-1))草甸草原(0.73 mg C g~(-1) SOC h~(-1))典型草原(0.50 mg C g~(-1) SOC h~(-1));而脉冲效应的持续时间(Duration)则表现为典型草原(2.5 h)草甸草原(1.5 h)荒漠草原(0.67 h)。在土壤复湿48 h内,单位土壤微生物呼吸累积量(A_(R_(Soil)))的大小规律与单位土壤微生物呼吸速率R_(Soil)一致,均为典型草原草甸草原荒漠草原;然而,如果用土壤有机质进行标准化,单位有机质呼吸累积量A_(R_(SOC))表现为荒漠草原(9.74 mg C g~(-1) SOC)典型草原(6.54 mg C g~(-1) SOC)草甸草原(3.54 mg C g~(-1) SOC),与当地年降雨频率呈负相关关系,表明降水脉冲效应与土壤长期经历的干旱状况存在密切关系。本研究结果不仅证明在干旱半干旱区域降水脉冲效应的普遍性,同时还启发我们应从国家或区域尺度开展研究,以进一步揭示土壤基质含量、土壤干旱状况等对降水脉冲效应的影响。  相似文献   

2.
Soil surface CO2 flux (RS) is overwhelmingly the product of respiration by roots (autotrophic respiration, RA) and soil organisms (heterotrophic respiration, RH). Many studies have attempted to partition RS into these two components, with highly variable results. This study analyzes published data encompassing 54 forest sites and shows that RA and RH are each strongly (R2>0.8) correlated to annual RS across a wide range of forest ecosystems. Monte Carlo simulation showed that these correlations were significantly stronger than any correlation introduced as an artefact of measurement method. Biome type, measurement method, mean annual temperature, soil drainage, and leaf habit were not significant. For sites with available data, there was a significant (R2=0.56) correlation between total detritus input and RH, while RA was unrelated to net primary production. We discuss why RA and RH might be related to each other on large scales, as both ultimately depend on forest carbon balance and photosynthate supply. Limited data suggest that these or similar relationships have broad applicability in other ecosystem types. Site‐specific measurements are always more desirable than the application of inferred broad relationships, but belowground measurements are difficult and expensive, while measuring RS is straightforward and commonly done. Thus the relationships presented here provide a useful method that can help constrain estimates of terrestrial carbon budgets.  相似文献   

3.
阳小成  阿舍小虎  苗原  刘银占 《生态学报》2016,36(17):5371-5378
采用土壤二氧化碳(CO_2)通量自动测量系统,对不同放牧模式(全年禁牧、夏季放牧、冬季放牧和自由放牧)下川西北高寒草甸的土壤呼吸进行监测,比较了不同放牧模式下土壤呼吸的季节动态和温度敏感性。研究发现:1)放牧模式可以改变高寒草甸土壤呼吸的季节动态变化。禁牧、夏季放牧以及自由放牧样地的土壤呼吸在季节上的变化趋势基本相似,而冬季放牧样地的土壤呼吸最大值与前者相比明显向后推迟;2)放牧模式并不改变高寒草甸年平均土壤呼吸速率,但对不同季节土壤呼吸速率的影响不同;3)不同放牧模式可以改变土壤呼吸对温度的敏感性(Q_(10))。不同放牧模式下土壤呼吸Q_(10)值大小依次为:禁牧1a(8.13)冬季放牧(7.49)禁牧3a(5.46)夏季放牧(5.20)自由放牧(4.53)。该地区土壤呼吸的Q_(10)值均明显高于热带和其它温带草地土壤呼吸的Q_(10)值。结果表明,放牧模式是影响高寒草甸土壤碳排放的一个重要因素。此外,在未来全球气候变暖背景下,在生长季节无放牧干扰的高寒草甸可能比放牧干扰的高寒草甸释放出更多的CO_2到大气中。  相似文献   

4.
How global warming will affect soil respiration (R S) and its source components is poorly understood despite its importance for accurate prediction of global carbon (C) cycles. We examined the responses of R S, heterotrophic respiration (R H), autotrophic respiration (R A), nitrogen (N) availability, and fine-root biomass to increased temperature in an open-field soil warming experiment. The experiment was conducted in a cool-temperate deciduous forest ecosystem in northern Japan. As this forest is subjected to strong temporal variation in temperature, on scales ranging from daily to seasonal, we also investigated the temporal variation in the effects of soil warming on R S, R H, and R A. Soil temperature was continuously elevated by about 4.0°C from 2007 to 2014 using heating wires buried in the soil, and we measured soil respiratory processes in all four seasons from 2012 to 2014. Soil warming increased annual R S by 32–45%, but the magnitude of the increase was different between the components: R H and R A were also stimulated, and increased by 39–41 and 17–18%, respectively. Soil N availability during the growing season and fine-root biomass were not remarkably affected by the warming treatment. We found that the warming effects varied seasonally. R H increased significantly throughout the year, but the warming effect showed remarkable seasonal differences, with the maximum stimulation in the spring. This suggests that warmer spring temperature will produce a greater increase in CO2 release than warmer summer temperatures. In addition, we found that soil warming reduced the temperature sensitivity (Q 10) of R S. Although the Q 10 of both R H and R A tended to be reduced, the decrease in the Q 10 of R S was caused mainly by a decrease in the response of R A to warming. These long-term results indicate that a balance between the rapid and large response of soil microbes and the acclimation of plant roots both play important roles in determining the response of R S to soil warming, and must be carefully considered to predict the responses of soil C dynamics under future temperature conditions.  相似文献   

5.
高丽  侯向阳  王珍  韩文军  运向军 《生态学报》2019,39(14):5095-5105
以欧亚温带草原东缘生态样带为平台,以样带上未放牧和重度放牧配对样地为研究对象,开展重度放牧对欧亚温带典型草原土壤氮矿化及其温度敏感性的影响研究。结果表明:(1)在室内培养条件下,土壤氮积累量和土壤净氮矿化速率呈现出干燥度指数较大的样点显著大于干燥度指数最低的样点(P0.05)。在相对湿润的样点,土壤氮素矿化周转速率较快;(2)重度放牧对不同样点土壤氮积累量和土壤氮矿化速率的影响是不同的。在干燥度指数较高样点,重度放牧样地土壤铵态氮减少量和速率较未放牧样地低(P0.05),重度放牧显著降低了土壤硝态氮积累量、无机氮积累量、硝化速率、净氮矿化速率(P0.05);在干燥度指数较低样点,重度放牧样地土壤铵态氮减少量和速率较未放牧样地高(P0.05),重度放牧对土壤硝态氮积累量、无机氮积累量、硝化速率、净氮矿化速率影响不大(P0.05);(3)土壤氮矿化作用温度敏感性(Q_(10))变化范围在1.61—2.06,重度放牧对Q_(10)无显著影响。随着纬度的升高,Q_(10)呈升高趋势。Q_(10)与基质质量指数以及表观活化能与基质质量指数均呈显著的负相关关系(P0.05);(4)土壤硝态氮积累量、无机氮积累量、硝化速率、净氮矿化速率对重度放牧的响应比与干燥度指数呈极显著负相关(P0.01),重度放牧对欧亚温带典型草原土壤氮矿化的影响受气候条件(温度和降水)的调控。  相似文献   

6.
量化森林土壤呼吸(RS)及其组分对准确地评估森林土壤碳吸存极其重要。该文以鼎湖山南亚热带季风常绿阔叶林及其演替系列针阔叶混交林和马尾松(Pinus massoniana)林为研究对象, 采用挖壕沟法结合静态气室CO2测定法对这3种林分类型的RS进行分离量化。结果表明: 鼎湖山3种森林演替系列上的森林RS及其组分(自养呼吸RA、异养呼吸RH)均呈现出明显的季节动态, 表现为夏季最高、冬季最低的格局。在呼吸总量上, 季风常绿阔叶林显著高于针阔叶混交林和马尾松林, 但混交林与马尾松林之间差异不显著; RA除季风常绿阔叶林显著大于针阔叶混交林外, 其余林分之间差异不显著; 对于RH来说, 3个林分之间均无显著差异。随着森林正向演替的进行, 由马尾松林至针阔叶混交林至季风常绿阔叶林, RA对土壤总呼吸的年平均贡献率分别为(39.48 ± 15.49)%、(33.29 ± 17.19)%和(44.52 ± 10.67)%, 3个林分之间差异不显著。方差分析结果表明, 土壤温度是影响RS及其组分的主要环境因子, 温度与RS及其组分呈显著的指数关系; 土壤含水量对RS的影响不显著, 甚至表现为轻微的抑制现象, 但未达到显著性水平。对温度敏感性指标Q10值的分析表明, 3个林分均为RA的温度敏感性最大, RH的温度敏感性最小。  相似文献   

7.
马进鹏  庞丹波  陈林  万红云  李学斌 《生态学报》2023,43(11):4722-4733
土壤呼吸作为陆地生态系统碳循环的重要组成部分,对研究干旱半干旱区荒漠草原碳平衡具有重要意义。选取荒漠草原4种典型植物枯落物进行裂区实验,设置氮、水添加实验处理,探讨不同的枯落物地表,短期氮、水处理对荒漠草原土壤呼吸的影响。结果表明,土壤呼吸日动态呈单峰曲线,最大值出现在10:00—12:00。相同处理间不同枯落物地表和相同枯落物地表不同处理间土壤呼吸在白天和夜间均有差异(P<0.05)。枯落物对土壤呼吸贡献表明,短期不做任何处理的枯落物对土壤呼吸的贡献最大,贡献率高达68%—89%。多因素方差分析显示,氮及氮和水交互作用对土壤呼吸的影响显著。呼吸在降水处理间存在显著差异(P<0.05),表现为减雨(P3)>增雨(P2)>正常(P1);呼吸在氮素处理间存在极显著差异(P<0.001),表现为添氮(N1)>不添氮(N0)。土壤呼吸与土壤温度、土壤湿度拟合发现,短期的氮、水处理下土壤温度与土壤呼吸显著相关(P<0.05),可解释呼吸变化的50.3%—69.9%;土壤湿度对呼吸影响不显著(P>0.05),温度、湿度的交互作用对土壤呼吸的影响显著(...  相似文献   

8.
Global warming has the potential to increase soil respiration (RS), one of the major fluxes in the global carbon (C) cycle. RS consists of an autotrophic (RA) and a heterotrophic (RH) component. We combined a soil warming experiment with a trenching experiment to assess how RS, RA, and RH are affected. The experiment was conducted in a mature forest dominated by Norway spruce. The site is located in the Austrian Alps on dolomitic bedrock. We warmed the soil of undisturbed and trenched plots by means of heating cables 4 °C above ambient during the snow‐free seasons of 2005 and 2006. Soil warming increased the CO2 efflux from control plots (RS) by ∼45% during 2005 and ∼47% during 2006. The CO2 efflux from trenched plots (RH) increased by ∼39% during 2005 and ∼45% during 2006. Similar responses of RS and RH indicated that the autotrophic and heterotrophic components of RS responded equally to the temperature increase. Thirty‐five to forty percent or 1 t C ha−1 yr−1 of the overall annual increase in RS (2.8 t C ha−1 yr−1) was autotrophic. The remaining, heterotrophic part of soil respiration (1.8 t C ha−1 yr−1), represented the warming‐induced C loss from the soil. The autotrophic component showed a distinct seasonal pattern. Contribution of RA to RS was highest during summer. Seasonally derived Q10 values reflected this pattern and were correspondingly high (5.3–9.3). The autotrophic CO2 efflux increase due to the 4 °C warming implied a Q10 of 2.9. Hence, seasonally derived Q10 of RA did not solely reflect the seasonal soil temperature development.  相似文献   

9.
李愈哲  樊江文  胡中民  邵全琴 《生态学报》2018,38(22):8194-8204
为了解管理利用方式变化对原本以放牧利用为主的草地生态系统的碳交换及碳平衡将产生怎样的影响。在中国北方温性草原区域利用连接同化箱的便携式红外分析系统,在相互毗连的地块调查了3种典型草地管理利用方式植被生长旺季的生态系统碳交换及其精细组分。结果表明,相比放牧草地,开垦农用显著降低生态系统的日均碳交换(下降56%,P0.05),而长期围封也趋向降低生态系统的日均碳交换,但变化并不显著(P0.05)。与之近似,NPP在放牧与禁牧草地间差异不显著,开垦农用使NPP显著下降,但降幅小于NEP。GPP在3种管理利用方式间差异相对较小。生态系统总呼吸、自养、异养、地上和地下呼吸在放牧和禁牧草地间均无显著差异,均显著低于开垦后的麦田,根系呼吸在3种管理利用方式间无显著变化。相比草地放牧,草地开垦显著增加自养呼吸在总呼吸中的占比,而土壤呼吸和根系呼吸的占比均显著下降,禁牧对呼吸组成的影响不明显。不同管理利用方式草地的地下生物量能很好的解释土壤呼吸占比(95%)和根系呼吸占比(77%)的变化,而LAI则与自养呼吸占比显著正相关(P0.001)。草地开垦利用增强生态系统的碳释放、减少CO_2固定,相比开垦农用,禁牧对放牧草地碳交换及其组分的影响相对较小。  相似文献   

10.
地下根系是草原生态系统的重要组成部分,其生物量及其净生产力对地下碳库具有直接与间接作用,分析地下生物量季节动态与周转对深入揭示草原生态系统碳库动态及其固碳速率与潜力具有重要意义。应用钻土芯法对不同利用方式或管理措施下内蒙古草甸草原、典型草原地下生物量动态及其与温度、降水的相关性研究表明:草甸草原和典型草原地上生物量季节动态均为单峰型曲线,与上月降水显著正相关(P0.05),但地下生物量季节动态表现为草甸草原呈"S"型曲线,典型草原则是双峰型曲线,与温度、降水相关性均不显著(P0.05);两种草原根冠比和地下生物量垂直分布均为指数函数曲线,根茎型草原地下生物量集中在土壤0—5 cm,丛生型草原地下生物量集中于土壤5—10 cm,根冠比值在生长旺季(7—8月份)最小。草甸草原地下净生产力及碳储量范围分别为2167—2953 g m-2a-1和975—1329 gC m-2a-1,典型草原为2342—3333 g m-2a-1和1054—1450 gC m-2a-1,地下净生产力及其碳储量约为地上净生产力及其碳储量的10倍,具有较大的年固碳能力,且相对稳定;地下净生产力与地上净生产力呈显著负相关性(P0.05);地下生物量碳库是地上生物量碳库的10倍左右,适度放牧可增加地下生产力,但长期过度放牧显著降低其地下生物量与生产力,并使其垂直分布趋向于浅层化。  相似文献   

11.

Aims and Background

While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated.

Methods

Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach.

Results

The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature.

Conclusions

The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.  相似文献   

12.
宁夏草地土壤有机碳空间特征及其影响因素   总被引:1,自引:0,他引:1  
草地是重要的碳汇资源库,在陆地生态系统碳循环中扮演着重要角色。探明草地土壤有机碳的空间分布格局及其影响因素对于推动区域生态系统碳汇管理,实现“双碳”目标和绿色高质量发展具有重要意义。以宁夏三种主要草地类型为研究对象,基于野外样点调查,采用结构方程模型,分析了草地土壤有机碳的空间分布特征及其影响因素。结果表明:不同类型草地土壤有机碳含量表现为草甸草原高于典型草原,荒漠草原最低,垂直剖面上均随土壤深度的增加而降低。草甸草原和荒漠草原有机碳空间变异自表层向下逐渐增大,典型草原在20—40 cm土层变异系数达到最大。有机碳分布在区域上从南部六盘山山地向中部干旱风沙带逐渐降低。路矩分析发现,海拔高度、地上生物量、降水量、温度和土壤含水量可解释土壤有机碳空间变异的91.4%。海拔高度对土壤有机碳总效应最大(作用系数为0.78),海拔高度引起的降水和温度等要素区域分异间接影响土壤有机碳含量;地上生物量对土壤有机碳的直接正向效应最大(0.559);降水量对土壤有机碳效应分为直接效应和作用于生物量及土壤含水量的间接影响;温度表现为通过生物量对土壤有机碳间接产生负向效应(-0.259)。宁夏草地土壤有机碳...  相似文献   

13.
Multiple lines of existing evidence suggest that increasing CO2 emission from soils in response to rising temperature could accelerate global warming. However, in experimental studies, the initial positive response of soil heterotrophic respiration (RH) to warming often weakens over time (referred to apparent thermal acclimation). If the decreased RH is driven by thermal adaptation of soil microbial community, the potential for soil carbon (C) losses would be reduced substantially. In the meanwhile, the response could equally be caused by substrate depletion, and would then reflect the gradual loss of soil C. To address uncertainties regarding the causes of apparent thermal acclimation, we carried out sterilization and inoculation experiments using the soil samples from an alpine meadow with 6 years of warming and nitrogen (N) addition. We demonstrate that substrate depletion, rather than microbial adaptation, determined the response of RH to long-term warming. Furthermore, N addition appeared to alleviate the apparent acclimation of RH to warming. Our study provides strong empirical support for substrate availability being the cause of the apparent acclimation of soil microbial respiration to temperature. Thus, these mechanistic insights could facilitate efforts of biogeochemical modeling to accurately project soil C stocks in the future climate.  相似文献   

14.
We warmed the top soil of a mature coniferous forest stand by means of heating cables on control and trenched plots within 24 h by 10°C at 1 cm soil depth (9°C at 5 cm depth) and measured the effect on the autotrophic (RA) and heterotrophic (RH) component of total soil CO2 efflux (RS). The short time frame of warming enabled us to exclude confounding fluctuations in soil moisture and carbon (C) flow from the canopy. The results of the field study were backed up by a lab soil incubation experiment. During the first 12 h of warming, RA strongly responded to soil warming; The Q 10 values were 5.61 and 6.29 for 1 and 5 cm soil depth temperature. The Q 10 values for RA were almost twice as high as the Q 10 values of RH (3.04 and 3.53). Q 10 values above 5 are above reasonable plant physiological values for root respiration. We see interactions of roots, mycorrhizae and heterotrophic microbes, combined with fast substrate supply to the rhizosphere as an explanation for the high short-term temperature response of RA. When calculated over the whole duration (24 h) of the field soil-warming experiment, temperature sensitivities of RA and RH were similar (no significant difference at P < 0.05); Q 10 values were 3.16 and 3.96 for RA and 2.94 and 3.35 for RH calculated with soil temperatures at 1 and 5 cm soil depth, respectively. Laboratory incubation showed that different soil moisture contents of trenched and control plots affected rates of RH, but did not affect the temperature sensitivity of RH. We conclude that a single parameter is sufficient to describe the temperature sensitivity of RS in soil C models which operate on larger temporal and spatial scales. The strong short-term response of RA may be of relevance in soils suspected to experience increasingly strong diurnal temperature variations.  相似文献   

15.
Mycorrhizal symbiosis between plant roots and mycorrhizal fungi are almost ubiquitous. These interactions contribute a largely to soil autotrophic respiration (RA), influence soil heterotrophic respiration (RH) and respond strongly to such climatic changes as temperature and precipitation. The aim of the present study was to explore how variation of temperature and precipitation influence RA and RH in global forest ecosystems that are classified by the mycorrhizal type of the dominant plants. The results show slight variation for RA and significant change for RH among different mycorrhizal strategy types. In forests with predominating arbuscular mycorrhiza (AM) the RA and RH are trifling higher than in non-AM type forests. The responses of RA and RH to temperature and precipitation were highly variable among different mycorrhizal strategies. For example, the changes of RA and RH are more dependent on precipitation than temperature in AM-forest, and temperature accounted more for their variations in forests of the other three mycorrhizal types. As far as we know, this study was the first to evaluate the influence of different mycorrhizal strategies on forest RA and RH and their response to temperature and precipitation.  相似文献   

16.
Understanding anthropogenic influences on soil respiration (Rs) is critical for accurate predictions of soil carbon fluxes, but it is not known how Rs responds to grazing exclusion (GE). Here, we conducted a manipulative experiment in a meadow grassland on the Tibetan Plateau to investigate the effects of GE on Rs. The exclusion of livestock significantly increased soil moisture and above‐ground biomass, but it decreased soil temperature, microbial biomass carbon (MBC), and Rs. Regression analysis indicated that the effects of GE on Rs were mainly due to changes in soil temperature, soil moisture, and MBC. Compared with the grazed blocks, GE significantly decreased soil carbon release by 23.6% over the growing season and 21.4% annually, but it increased the temperature sensitivity (Q10) of Rs by 6.5% and 14.2% for the growing season and annually respectively. Therefore, GE may reduce the release of soil carbon from the Tibetan Plateau, but under future climate warming scenarios, the increases in Q10 induced by GE could lead to increased carbon emissions.  相似文献   

17.
Precipitation regimes are predicted to become more variable with more extreme rainfall events punctuated by longer intervening dry periods. Water‐limited ecosystems are likely to be highly responsive to altered precipitation regimes. The bucket model predicts that increased precipitation variability will reduce soil moisture stress and increase primary productivity and soil respiration in aridland ecosystems. To test this hypothesis, we experimentally altered the size and frequency of precipitation events during the summer monsoon (July through September) in 2007 and 2008 in a northern Chihuahuan Desert grassland in central New Mexico, USA. Treatments included (1) ambient rain, (2) ambient rain plus one 20 mm rain event each month, and (3) ambient rain plus four 5 mm rain events each month. Throughout two monsoon seasons, we measured soil temperature, soil moisture content (θ), soil respiration (Rs), along with leaf‐level photosynthesis (Anet), predawn leaf water potential (Ψpd), and seasonal aboveground net primary productivity (ANPP) of the dominant C4 grass, Bouteloua eriopoda. Treatment plots receiving a single large rainfall event each month maintained significantly higher seasonal soil θ which corresponded with a significant increase in Rs and ANPP of B. eriopoda when compared with plots receiving multiple small events. Because the strength of these patterns differed between years, we propose a modification of the bucket model in which both the mean and variance of soil water change as a consequence of interannual variability from 1 year to the next. Our results demonstrate that aridland ecosystems are highly sensitive to increased precipitation variability, and that more extreme precipitation events will likely have a positive impact on some aridland ecosystem processes important for the carbon cycle.  相似文献   

18.
Wang J  Sha L Q  Li J Z  Feng Z L 《农业工程》2008,28(8):3574-3583
Soil carbon stored on the Tibetan Plateau appears to be stable under current temperature, but it may be sensitive to global warming. In addition, different grazing systems may alter carbon emission from subalpine meadow ecosystems in this region. Using a chamber-closed dynamic technique, we measured ecosystem respiration (ER) and soil respiration (SR) rates with an infrared gas analyzer on a perennial grazing meadow (PM) and a seasonal grazing meadow (SM) of Shangri-La in the Hengduan Mountain area. Both PM and SM showed strong unimodal seasonal variations, with the highest rates in July and the lowest in January. Significant diurnal variations in respiration were also observed on PM, affected mainly by air and soil temperatures, with the highest rates at 14:00 and the lowest before dawn. Both ER and SR rates were higher on PM than on SM from June to October, suggesting that the higher grazing pressure on PM increased respiration rates on subalpine meadows. The exponential model F = aebT<,/sup> of soil temperature (T) explained the variation in respiration better than the model of soil moisture (W) (R2 = 0.50–0.78, P < 0.0001), while the multiple model F = aebT<,/sup>Wc gave better simulations than did single-factor models (R2 = 0.56–0.89, P < 0.0001). Soil respiration was the major component of ER, accounting for 63.0%–92.7% and 47.5%–96.4% of ER on PM and SM, respectively. Aboveground plant respiration varied with grass growth. During the peak growing season, total ecosystem respiration may be dominated by this above-ground component. Long-term (annual) Q10 values were about twice as large as short-term (one day) Q10. Q10 at different time scales may be controlled by different ecological processes. The SM had a lower long-term Q10 than did the PM, suggesting that under increased temperature, soil carbon may be more stable with reduced grazing pressure.  相似文献   

19.
To investigate annual variation in soil respiration (R S) and its components [autotrophic (R A) and heterotrophic (R H)] in relation to seasonal changes in soil temperature (ST) and soil water content (SWC) in an Abies holophylla stand (stand A) and a Quercus-dominated stand (stand Q), we set up trenched plots and measured R S, ST and SWC for 2 years. The mean annual rate of R S was 436 mg CO2 m−2 h−1, ranging from 76 to 1,170 mg CO2 m−2 h−1, in stand A and 376 mg CO2 m−2 h−1, ranging from 82 to 1,133 mg CO2 m−2 h−1, in stand Q. A significant relationship between R S and its components and ST was observed over the 2 years in both stands, whereas a significant correlation between R A and SWC was detected only in stand Q. On average over the 2 years, R A accounted for approximately 34% (range 17–67%) and 31% (15–82%) of the variation in R S in stands A and Q, respectively. Our results suggested that vegetation type did not significantly affect the annual mean contributions of R A or R H, but did affect the pattern of seasonal change in the contribution of R A to R S.  相似文献   

20.
We used estimates of autotrophic respiration (RA), net primary productivity (NPP) and soil CO2 evolution (Sff), to develop component carbon budgets for 12‐year‐old loblolly pine plantations during the fifth year of a fertilization and irrigation experiment. Annual carbon use in RA was 7.5, 9.0, 15.0, and 15.1 Mg C ha?1 in control (C), irrigated (I), fertilized (F) and irrigated and fertilized (IF) treatments, respectively. Foliage, fine root and perennial woody tissue (stem, branch, coarse and taproot) respiration accounted for, respectively, 37%, 24%, and 39% of RA in C and I treatments and 38%, 12% and 50% of RA in F and IF treatments. Annual gross primary production (GPP=NPP+RA) ranged from 13.1 to 26.6 Mg C ha?1. The I, F, and IF treatments resulted in a 21, 94, and 103% increase in GPP, respectively, compared to the C treatment. Despite large treatment differences in NPP, RA, and carbon allocation, carbon use efficiency (CUE=NPP/GPP) averaged 0.42 and was unaffected by manipulating site resources. Ecosystem respiration (RE), the sum of Sff, and above ground RA, ranged from 12.8 to 20.2 Mg C ha?1 yr?1. Sff contributed the largest proportion of RE, but the relative importance of Sff decreased from 0.63 in C treatments to 0.47 in IF treatments because of increased aboveground RA. Aboveground woody tissue RA was 15% of RE in C and I treatments compared to 25% of RE in F and IF treatments. Net ecosystem productivity (NEP=GPP‐RE) was roughly 0 in the C and I treatments and 6.4 Mg C ha?1 yr?1 in F and IF treatments, indicating that non‐fertilized treatments were neither a source nor a sink for atmospheric carbon while fertilized treatments were carbon sinks. In these young stands, NEP is tightly linked to NPP; increased ecosystem carbon storage results mainly from an increase in foliage and perennial woody biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号