首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the Cas9 protein from Streptococcus pyogenes (SpCas9) is the most widely used clustered regularly interspaced short palindromic repeats (CRISPR) variant in genome engineering experiments, it does have certain limitations. First, the stringent requirement for the protospacer adjacent motif (PAM) sequence limits the target DNA that can be manipulated using this method in insects. Second, its complementarity specifications are not very stringent, meaning that it can sometimes cause off-target effects at the target site. A recent study reported that an evolved SpCas9 variant, xCas9(3.7), with preference for various 5′-NG-3′ PAM sequences not only has the broadest PAM compatibility but also has much greater DNA specificity and lower genome-wide off-target activity than SpCas9 in mammalian cells. Here we applied the CRISPR/xCas9 system to target the white gene in Drosophila melanogaster, testing the genome-editing efficiency of xCas9 at different PAM sites. On the GGG PAM site, xCas9 showed less activity than SpCas9. For the non-NGG PAM site TGA, xCas9 could produce DNA cleavage and indel-mediated disruption on the target gene. However, for other non-NGG PAM sites, xCas9 showed no activity. These findings show that the evolved Cas9 variant with broad PAM compatibility is functional in Drosophila to induce heritable gene alterations, increasing the targeting range for the applications of genome editing in insects.  相似文献   

2.
CRISPR/Cas9技术的脱靶效应及优化策略   总被引:1,自引:0,他引:1  
  相似文献   

3.
Dong  Zhanqi  Qin  Qi  Hu  Zhigang  Chen  Peng  Huang  Liang  Zhang  Xinling  Tian  Ting  Lu  Cheng  Pan  Minhui 《中国病毒学》2019,34(4):444-453
Recently the developed single guide(sg)RNA-guided clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease(CRISPR/Cas9) technology has opened a new avenue for antiviral therapy. The CRISPR/Cas9 system uniquely allows targeting of multiple genome sites simultaneously. However, there are relatively few applications of CRISPR/Cas9 multigene editing to target insect viruses. To address the need for sustained delivery of a multiplex CRISPR/Cas9-based genome-editing vehicle against insect viruses, we developed a one-vector(pSL1180-Cas9-U6-sgRNA) system that expresses multiple sgRNA and Cas9 protein to excise Bombyx mori nucleopolyhedrovirus(BmNPV) in insect cells.We screened the immediate-early-1 gene(ie-1), the major envelope glycoprotein gene(gp64), and the late expression factor gene(lef-11), and identified multiple sgRNA editing sites through flow cytometry and viral DNA replication analysis. In addition, we constructed a multiplex editing vector(PSL1180-Cas9-sgIE1-sgLEF11-sgGP64, sgMultiple) to efficiently regulate multiplex gene-editing and inhibit BmNPV replication after viral infection. This is the first report of the application of a multiplex CRISPR/Cas9 system to inhibit insect virus replication. This multiplex system can significantly enhance the potential of CRISPR/Cas9-based multiplex genome engineering in insect virus.  相似文献   

4.
The CRISPR/Cas9 system has been proven as a revolutionary genome engineering tool. In most cases, single guide RNA (sgRNA) targeting sites have been designed as GN19NGG or GGN18NGG, because of restriction of the initiation nucleotide for RNA Pol III promoters. Here, we demonstrate that the U6 promoter from a lepidopteran model insect, Bombyx mori, effectively expressed the sgRNA initiated with any nucleotide bases (adenine, thymine, guanine or cytosine), which further expands the CRISPR targeting space. A detailed expansion index in the genome was analysed when N20NGG was set as the CRISPR targeting site instead of GN19NGG, and revealed a significant increase of suitable targets, with the highest increase occurring on the Z sex chromosome. Transfection of different types of N20NGG sgRNAs targeting the enhanced green fluorescent protein (EGFP) combined with Cas9, significantly reduced EGFP expression in the BmN cells. An endogenous gene, BmBLOS2, was also disrupted by using various types of N20NGG sgRNAs, and the cleavage efficiency of N20NGG sgRNAs with different initial nucleotides and GC contents was evaluated in vitro. Furthermore, transgenic silkworms expressing Cas9 and sgRNAs targeting the BmBLOS2 gene were generated with many types of mutagenesis. The typical transparent skin phenotype in knock-out silkworms was stable and inheritable, suggesting that N20NGG sgRNAs function sufficiently in vivo. Our findings represent a renewal of CRISPR/Cas9 target design and will greatly facilitate insect functional genetics research.  相似文献   

5.
The CRISPR/Cas9 system has been developed as an easy-handle and multiplexable approach for engineering eukaryotic genomes by zygote microinjection of Cas9 and sgRNA, while preparing Cas9 for microinjection is laborious and introducing inconsistency into the experiment. Here, we describe a modified strategy for gene targeting through using oocyte-specific Cas9 transgenic mouse. With this mouse line, we successfully achieve precise gene targeting by injection of sgRNAs only into one-cell-stage embryos. Through comprehensive analysis, we also show allele complexity and off-target mutagenesis induced by this strategy is obviously lower than Cas9 mRNA/sgRNA injection. Thus, injection of sgRNAs into oocyte-specific Cas9 transgenic mouse embryo provides a convenient, efficient and reliable approach for mouse genome editing.  相似文献   

6.
CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in designing CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the most used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co‐transferred plasmid backbone and low edit rate in wheat, a large T0 transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium‐delivered CRISPR/Cas9 system in wheat, which includes a wheat codon optimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat U6 promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain‐regulatory genes, TaCKX2‐1, TaGLW7, TaGW2, and TaGW8, in T0, T1, and T2 generation plants at an average edit rate of 10% without detecting off‐target mutations in the most Cas9‐active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160‐bp deletion in TaCKX2‐D1 significantly increased grain number per spikelet. In conclusion, our Agrobacterium‐delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because CRISPR/Cas9 remains active for novel mutations through generations.  相似文献   

7.
从喂养方式、喂养过程、营养成分、护理重点等多方面综述新生儿短肠综合征肠内营养的研究进展,并结合患儿的实际病情以及实验室检查结果等指标,提出对患儿进行持续性的肠内营养支持的具体做法:(1)在现实情况允许的条件下,保证用母乳喂养患儿,无法提供母乳的情况下合理配比奶粉,并根据实际需要添加一些纤维和脂类的补充剂,保障患儿健康发育;(2)在给予肠内营养的过程中全程无菌化处理,调节适宜的温度,合理选择药物;(3)应用大规模对照试验方式,通过大数据对比总结出持续肠内营养对短肠综合征患儿的影响,为儿科护理工作提供科学依据。  相似文献   

8.
张桂珊  杨勇  张灵敏  戴宪华 《遗传》2018,40(9):704-723
基于CRISPR/Cas9系统介导的第三代基因组定点编辑技术,已被广泛应用于基因编辑和基因表达调控等研究领域。如何提高该技术对基因组编辑的效率与特异性、最大限度降低脱靶风险一直是该领域的难点。近年来,机器学习为解决CRISPR/Cas9系统所面临的问题提供了新思路,基于机器学习的CRISPR/Cas9系统已逐渐成为研究热点。本文阐述了CRISPR/Cas9的作用机理,总结了现阶段该技术面临的基因组编辑效率低、存在潜在的脱靶效应、前间区序列邻近基序(PAM)限制识别序列等问题,最后对机器学习应用于优化设计高效向导RNA (sgRNA)序列、预测sgRNA的活性、脱靶效应评估、基因敲除、高通量功能基因筛选等领域的研究现状与发展前景进行了展望,以期为基因组编辑领域的研究提供参考。  相似文献   

9.
《Fly》2013,7(1):52-57
The type II CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated) has recently emerged as an efficient and simple tool for site-specific engineering of eukaryotic genomes. To improve its applications in Drosophila genome engineering, we simplified the standard two-component CRISPR/Cas9 system by generating a stable transgenic fly line expressing the Cas9 endonuclease in the germline (Vasa-Cas9 line). By injecting vectors expressing engineered target-specific guide RNAs into Vasa-Cas9 fly embryos, mutations were generated from site-specific DNA cleavages and efficiently transmitted into progenies. Because Cas9 endonuclease is the universal component of the type II CRISPR/Cas9 system, site-specific genomic engineering based on this improved platform can be achieved with lower complexity and toxicity, greater consistency, and excellent versatility.  相似文献   

10.
The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-related nuclease 9(Cas9) system enables precise, simple editing of genes in many animals and plants.However, this system has not been applied to rose(Rosa hybrida) due to the genomic complexity and lack of an efficient transformation technology for this plant. Here, we established a platform for screening single-guide RNAs(sgRNAs) with high editing efficiency for CRISPR/Cas9-mediated gene editing in rose using suspensio...  相似文献   

11.
Zhou  Hong  Zhou  Michael  Li  Daisy  Manthey  Joseph  Lioutikova  Ekaterina  Wang  Hong  Zeng  Xiao 《BMC genomics》2017,18(9):826-38

Background

The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA.

Results

Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology.

Conclusions

By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.
  相似文献   

12.
郑武  谷峰 《遗传》2015,37(10):1003-1010
CRISPR/Cas9基因编辑技术在生命科学领域掀起了一场全新的技术革命,该技术可以对基因组特定位点进行靶向编辑,包括缺失、插入、修复等。CRISPR/Cas9比锌指核酸酶 (ZFNs)和转录激活因子样效应物核酸酶(TALENs)技术更易于操作,而且更高效。CRISPR/Cas9系统中的向导RNA(Single guide RNA, sgRNA)是一段与目标DNA片段匹配的RNA序列,指导Cas9蛋白对基因组进行识别。研究发现,设计的sgRNA会与非靶点DNA序列错配,引入非预期的基因突变,即脱靶效应(Off-target effects)。脱靶效应严重制约了CRISPR/Cas9基因编辑技术的广泛应用。为了避免脱靶效应,研究者对影响脱靶效应的因素进行了系统研究并提出了许多降低脱靶效应的方法。文章总结了CRISPR/Cas9系统的应用及脱靶效应研究进展,以期为相关领域的工作提供参考。  相似文献   

13.
Endoglucanase is a part of cellulase which hydrolyzes cellulose into glucose. In this study, we cloned endoglucanase III (EG III) gene from Trichoderma viride strain AS 3.3711 using a PCR-based exon splicing method, and expressed EG III recombinant protein in both silkworm BmN cell line and silkworm larvae with an improved Bac-to-Bac/BmNPV mutant baculovirus expression system, which lacks the chiA and v-cath genes of Bombyx mori nucleopolyhedrovirus (BmNPV). The result showed that around 45 kDa protein was visualized in BmN cells at 48 h after the second generation recombinant mBacmid/BmNPV/EG III baculovirus infection. The enzymes from recombinant baculoviruses infected silkworms exhibited significant maximum enzyme activity at the environmental condition of pH 8.0 and temperature 50°C, and increased 20.94 and 19.13% compared with that from blank mBacmid/BmNPV baculoviruses infected silkworms and normal silkworms, respectively. It was stable at pH range from 5.0 to 9.0 and at temperature range from 40 to 60°C. It provided a possibility to generate transgenic silkworms expressing bio-active cellulase, which can catabolize dietary fibers more efficiently, and it might be of great significance for sericulture industry.  相似文献   

14.

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T0 plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T1 generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T0 plants, we could remove foreign DNA easily by genetic segregation in the T1 generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.

  相似文献   

15.
Key message

Combining with a CRISPR/Cas9 system, Agrobacterium-mediated transformation can lead to precise targeted T-DNA integration in the rice genome.

Abstract

Agrobacterium-mediated T-DNA integration into the plant genomes is random, which often causes variable transgene expression and insertional mutagenesis. Because T-DNA preferentially integrates into double-strand DNA breaks, we adapted a CRISPR/Cas9 system to demonstrate that targeted T-DNA integration can be achieved in the rice genome. Using a standard Agrobacterium binary vector, we constructed a T-DNA that contains a CRISPR/Cas9 system using SpCas9 and a gRNA targeting the exon of the rice AP2 domain-containing protein gene Os01g04020. The T-DNA also carried a red fluorescent protein and a hygromycin resistance (hptII) gene. One version of the vector had hptII expression driven by an OsAct2 promoter. In an effort to detect targeted T-DNA insertion events, we built another T-DNA with a promoterless hptII gene adjacent to the T-DNA right border such that integration of T-DNA into the targeted exon sequence in-frame with the hptII gene would allow hptII expression. Our results showed that these constructs could produce targeted T-DNA insertions with frequencies ranging between 4 and 5.3% of transgenic callus events, in addition to generating a high frequency (50?80%) of targeted indel mutations. Sequencing analyses showed that four out of five sequenced T-DNA/gDNA junctions carry a single copy of full-length T-DNA at the target site. Our results indicate that Agrobacterium-mediated transformation combined with a CRISPR/Cas9 system can efficiently generate targeted T-DNA insertions.

  相似文献   

16.
17.
【目的】热休克应答(heatshockresponse,HSR)是机体细胞应对环境压力的一种重要防御策略,鉴定热休克蛋白在杆状病毒侵染宿主过程中的功能,并揭示其作用的分子机制,为探明宿主与病毒相互作用的分子基础提供理论依据。【方法】通过分子克隆技术对Bmhsc70-4基因进行克隆,并利用BioEdit及GeneDoc对其进行多序列比对分析;分别通过真核表达和基于CRISPR/Cas9的基因编辑系统对Bmhsc70-4基因进行过表达和敲除;利用荧光定量PCR技术检测相应基因的表达量;通过对Caspase-9和Caspase-3/7活性的检测确定Bmhsc70-4基因对细胞凋亡的影响;通过免疫荧光验证BmHSC70-4和BmIAP的共定位情况,并进一步通过免疫共沉淀验证它们的相互作用。【结果】Bmhsc70-4基因开放阅读框为1950bp,编码649个氨基酸,在昆虫间具有较高的保守性;BmNPV能够诱导Bmhsc70-4基因上调表达,过表达Bmhsc70-4基因能够促进BmNPV的增殖,敲除Bmhsc70-4基因能够抑制BmNPV的增殖,表明Bmhsc70-4基因的表达利于BmNPV的增殖;Bmhsc70-4基因具有抑制家蚕细胞凋亡的功能;荧光共定位显示BmHSC70-4和BmIAP共定位于细胞质中,免疫共沉淀结果表明两者可以相互作用;BmNPV侵染过程中Bmhsc70-4基因能够促进Bmiap基因的表达。【结论】Bmhsc70-4基因具有抑制家蚕细胞凋亡的功能,在BmNPV侵染家蚕细胞过程中,能够与BmIAP相互作用,并促进BmNPV复制增殖。  相似文献   

18.

Key message

We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scaffold and tRNA processing system, and CRISPR/Cas9-mediated T-DNA integrations.

Abstract

Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target mutagenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mCherry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants require a higher level of expression than their wild-type counterpart to maintain high editing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of CRISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to off-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving genome editing efficiency and specificity in plants and other organisms.
  相似文献   

19.
L Jiang  T Cheng  P Zhao  Q Yang  G Wang  S Jin  P Lin  Y Xiao  Q Xia 《PloS one》2012,7(8):e41838
The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP), Bombyx mori A4 promoter (A4P), hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG). After oral inoculation of BmNPV with 3 × 10(5) occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity.  相似文献   

20.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号