首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although comparison of RNA-protein interaction profiles across different conditions has become increasingly important to understanding the function of RNA-binding proteins (RBPs), few computational approaches have been developed for quantitative comparison of CLIP-seq datasets. Here, we present an easy-to-use command line tool, dCLIP, for quantitative CLIP-seq comparative analysis. The two-stage method implemented in dCLIP, including a modified MA normalization method and a hidden Markov model, is shown to be able to effectively identify differential binding regions of RBPs in four CLIP-seq datasets, generated by HITS-CLIP, iCLIP and PAR-CLIP protocols. dCLIP is freely available at http://qbrc.swmed.edu/software/.  相似文献   

2.
Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip ( http://cran.r-project.org/web/packages/MiClip/index.html ), and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip) for customized analysis.  相似文献   

3.
4.
Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama.  相似文献   

5.
Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing, and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results. Computational methods exist to assist in the preprocessing of flow cytometry data, identifying cell populations within it, matching those cell populations across samples, and performing diagnosis and discovery using the results of previous steps. For preprocessing, this includes compensating for spectral overlap, transforming data onto scales conducive to visualization and analysis, assessing data for quality, and normalizing data across samples and experiments. For population identification, tools are available to aid traditional manual identification of populations in two-dimensional scatter plots (gating), to use dimensionality reduction to aid gating, and to find populations automatically in higher dimensional space in a variety of ways. It is also possible to characterize data in more comprehensive ways, such as the density-guided binary space partitioning technique known as probability binning, or by combinatorial gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning techniques, and discovery of new cell types of biological importance by high-throughput statistical methods, as part of pipelines incorporating all of the aforementioned methods. Open standards, data, and software are also key parts of flow cytometry bioinformatics. Data standards include the widely adopted Flow Cytometry Standard (FCS) defining how data from cytometers should be stored, but also several new standards under development by the International Society for Advancement of Cytometry (ISAC) to aid in storing more detailed information about experimental design and analytical steps. Open data is slowly growing with the opening of the CytoBank database in 2010 and FlowRepository in 2012, both of which allow users to freely distribute their data, and the latter of which has been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. Open software is most widely available in the form of a suite of Bioconductor packages, but is also available for web execution on the GenePattern platform.
This is a “Topic Page” article for PLOS Computational Biology.
  相似文献   

6.
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins.  相似文献   

7.
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways.Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application.PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
This is a PLOS Computational Biology software article.
  相似文献   

8.

Background

Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction.

Result

We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram.

Conclusions

We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.miRPlant and its manual are freely available at http://www.australianprostatecentre.org/research/software/mirplant or http://sourceforge.net/projects/mirplant/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-275) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
Differential network analysis provides a framework for examining if there is sufficient statistical evidence to conclude that the structure of a network differs under two experimental conditions or if the structures of two networks are different. The R package dna provides tools and procedures for differential network analysis of genomic data. The focus of this package is on gene-gene networks, but the methods are easily adaptable for more general biological processes. This package includes preprocessing tools for simultaneously preparing a pair of networks for analysis, procedures for computing connectivity scores between pairs of genes based on many available statistical techniques, and tools for handling modules of genes based on these scores. Also, procedures are provided for performing permutation tests based on these scores to determine if the connectivity of a gene differs between the two networks, to determine if the connectivity of a particular set of important genes differs between the two networks, and to determine if the overall module structure differs between the two networks. Several built-in options are available for the types of scores and distances used in the testing procedures, and additionally, the procedures provide flexible methods that allow the user to define custom scores and distances.

Availability

dna is freely available at The Comprehensive R Archive Network, http://CRAN.R-project.org/package=dna  相似文献   

12.
Linking proteomics and structural data is critical to our understanding of cellular processes, and interactive exploration of these complementary data sets can be extremely valuable for developing or confirming hypotheses in silico. However, few computational tools facilitate linking these types of data interactively. In addition, the tools that do exist are neither well understood nor widely used by the proteomics or structural biology communities. We briefly describe several relevant tools, and then, using three scenarios, we present in depth two tools for the integrated exploration of proteomics and structural data.
A 3-D enhanced version of this article is available. The text is identical to this version but includes interactive figures.Viewing the enhanced version of this article requires the use of a browser plug-in. Please install the plug-in when prompted. http://www.thesgc.org/iSee/MCP/9/8/e1.html
  相似文献   

13.
14.
Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open‐access global archive housing three‐dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB‐designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro‐electron diffraction). The RCSB PDB research‐focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB‐designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high‐resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.  相似文献   

15.
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself.  相似文献   

16.
17.
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology).
This is a “Topic Page” article for PLOS Computational Biology.
  相似文献   

18.
19.
Whole-genome sequencing of tumor tissue has the potential to provide comprehensive characterization of genomic alterations in tumor samples. We present Patchwork, a new bioinformatic tool for allele-specific copy number analysis using whole-genome sequencing data. Patchwork can be used to determine the copy number of homologous sequences throughout the genome, even in aneuploid samples with moderate sequence coverage and tumor cell content. No prior knowledge of average ploidy or tumor cell content is required. Patchwork is freely available as an R package, installable via R-Forge (http://patchwork.r-forge.r-project.org/).  相似文献   

20.
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3′-untranslated regions (3′-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号