首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer that accounts for 85% of thyroid cancers. MicroRNAs (miRNAs) have been reported to play important roles in the biological processes in cancer. In this study, we analyzed the biological role of miR-4728 in human PTC process in human PTC cell lines in vitro. MiRNA-4728 was observed to down-regulated in human PTC tissues and PTC cell lines. Additionally, miR-4728 inhibited PTC cell proliferation. Further study demonstrated SOS1 was repressed by miR-4728 and overexpression of miR-4728 down-regulated both the mRNA and protein levels of SOS1. Moreover, miR-4728 overexpression also decreased the MAPK signaling activity. These observations suggested that miR-4728 could inhibit the process of human PTC through regulating MAPK signaling pathway. And, appropriate regulation of miR-4728 might be vital to improve human PTC treatment.  相似文献   

2.
3.
Retinoic acid is a promising tool in adjuvant cancer therapies, including refractory thyroid cancer, and its biological role is mediated by the retinoic acid receptor beta (RARβ). However, expression of RARβ is lowered in papillary thyroid carcinoma (PTC), contributing to promotion of tumor growth and inefficiency of retinoic acid and radioactive iodine treatment. The causes of aberrant RARB expression are largely unknown. We hypothesized that the culpable mechanisms include the action of microRNAs from the miR-146 family, previously identified as significantly upregulated in PTC tumors. To test this hypothesis, we assessed the expression of RARB as well as miR-146a-5p and miR-146b-5p in 48 PTC tumor/normal tissue pairs by Taqman assay to reveal that the expression of RARB was 3.28-fold decreased, and miR-146b-5p was 28.9-fold increased in PTC tumors. Direct interaction between miRs and RARB was determined in the luciferase assay and further confirmed in cell lines, where overexpression of miR-146a-5p and miR-146b-5p caused a 31% and 33% decrease in endogenous RARB mRNA levels. Inhibition of miR-146a and miR-146b resulted in 62.5% and 45.4% increase of RARB, respectively, and a concomitant decrease in proliferation rates of thyroid cancer cell lines, analyzed in xCELLigence system.We showed that two microRNAs of the miR-146 family directly regulate RARB. Inhibition of miRs resulted in restoration of RARB expression and decreased rates of proliferation of thyroid cancer cells. By restoring RARB levels, microRNA inhibitors may become part of an adjuvant therapy in thyroid cancer patients.  相似文献   

4.
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.  相似文献   

5.
Papillary thyroid cancer (PTC) is a kind of thyroid cancer and frequently presents with epithelial–mesenchymal transition (EMT). MicroRNAs (miRNAs) were previously reported to be associated with PTC. Thus, this study aims to define the role of microRNA-520a-3p (miR-520a-3p) in PTC through the JAK/STAT signaling pathway by targeting JAK1. The PTC and normal thyroid tissues of 137 PTC patients were collected. First of all, the expression pattern of miR-520a-3p, JAK1, JAK2, STAT3, E-cadherin, and vimentin in PTC was identified. The relationship between miR-520a-3p and JAK1 was predicted and analyzed. And a series of miR-520a-3p mimic or inhibitor, or siRNA JAK1 introduced into PTC cells were applied to examine the effect of miR-520a-3p on PTC cell viability, migration, invasion, cell cycle, apoptosis, and EMT. Meanwhile, the regulatory effect of miR-520a-3p and JAK1 on the JAK/STAT signaling pathway was also determined. The expression of JAK1, JAK2, STAT3, and vimentin increased yet miR-520a-3p and E-cadherin decreased in PTC tissue. JAK1 was negatively regulated by miR-520a-3p. Functionally, EMT induction was prevented by miR-520a-3p upregulation through downregulating JAK1. When upregulating miR-520a-3p or silencing JAK1 in PTC cells, PTC cell viability, migration, and invasion were inhibited yet cell apoptosis promoted with cells arrested at G1 phase, indicating that miR-520a-3p prevented PTC progression by downregulating JAK1. Moreover, miR-520a-3p elevation or JAK1 inhibition inactivated the JAK/STAT signaling pathway. Collectively, miR-520a-3p prevents cancer progression through inactivating the JAK/STAT signaling pathway by downregulating JAK1 in PTC.  相似文献   

6.
RET tyrosine kinase signaling in development and cancer   总被引:9,自引:0,他引:9  
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.  相似文献   

7.
Considering the resistance of papillary thyroid cancer (PTC) 131I therapy, this study was designed to find a solution at molecular respect. By probing into lncRNA-NEAT1/miR-101-3p/FN1 axis and PI3K/AKT signaling pathway, this study provided a potential target for PTC therapy. 131I-resistant cell lines were established by continuous treatment with median-lethal 131I. Bioinformatic analysis was applied to filtrate possible lncRNA/miRNA/mRNA and related signaling pathway. Luciferase reporter assay was employed in the verification of the targeting relationship between lncRNA and miRNA as well as miRNA and mRNA. MTT assay and flow cytometry assay were performed to observe the impact of NEAT1/miR-101-3p/FN1 on cell viability and apoptosis in radioactivity iodine (RAI)-resistant PTC cell lines, respectively. Western blot and qRT-PCR were conducted to measure the expression of proteins and mRNAs in RAI-resistant PTC tissues and cells. Meanwhile, endogenous PTC mice model were constructed, in order to verify the relation between NEAT1 and RAI-resistance in vivo. NEAT1 was over-expressed in RAI-resistant PTC tissues and cell lines and could resist RAI by accelerating proliferation accompanied by suppressing apoptosis. It indicated that overexpressed NEAT1 restrained the damage of RAI to tumor in both macroscopic and microcosmic. Besides, NEAT1/miR-101-3p exhibited a negative correlation by directly targeting each other. The expression of FN1, an overexpressed downstream protein in RAI-resistance PTC tissues, could be tuned down by miR-101-3p, while the decrease could be restored by NEAT1. In conclusion, both in vitro and in vivo, NEAT1 suppression could inhibit 131I resistance of PTC by upregulating miR-101-3p/FN1 expression and inactivated PI3K/AKT signaling pathway both in vitro and in vivo.  相似文献   

8.
The Met receptor tyrosine kinase is overexpressed and/or activated in variety of human malignancies. Previously we have shown that c-Met is overexpressed in Middle Eastern papillary thyroid carcinoma (PTC) and significantly associated with an aggressive phenotype, but its role has not been fully elucidated in PTC. The aim of this study was to determine the functional link between the c-Met/AKT signaling pathway and death receptor 5 (DR5) in a large cohort of PTC in a tissue microarray format followed by functional studies using PTC cell lines and nude mice. Our data showed that high expressions of p-Met and DR5 were significantly associated with an aggressive phenotype of PTC and correlated with BRAF mutation. Treatment of PTC cell lines with PHA665752, an inhibitor of c-Met tyrosine kinase, inhibited cell proliferation and induced apoptosis via the mitochondrial pathway in PTC cell lines. PHA665752 treatment or expression of c-Met small interfering (si)RNA resulted in dephosphorylation of c-Met, AKT and its downstream effector molecules. Furthermore, PHA665752 treatment upregulated DR5 expression via generation of reactive oxygen species in PTC cell lines, and synergistically potentiated death receptor-induced apoptosis with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Finally, cotreatment with PHA665752 and TRAIL caused more pronounced effects on PTC xenograft tumor growth in nude mice. Our data suggest that the c-Met/AKT pathway may be a potential target for therapeutic intervention for treatment of PTC refractory to conventionally therapeutic modalities.  相似文献   

9.
Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with growing incidence every year. microRNAs (miRs) are known to regulate the physiological and pathological processes of cancers, such as proliferation, migration, invasion, survival, and epithelial-mesenchymal transition (EMT). Herein, this study aimed to investigate the effect of miR-539 on cell proliferation, apoptosis, and EMT by targeting secretory leukocyte protease inhibitor (SLPI) via the transforming growth factor β1 (TGF-β1)/Smads signaling pathway in PTC. First, PTC-related differentially expressed genes and regulatory miR were screened using bioinformatics analysis, dual luciferase reporter gene assay, and ribonucleoprotein immunoprecipitation, which identified the SLPI gene and the regulatory miR-539 for this study. We identified SLPI as a highly expressed gene in PTC tissues, and SLPI was targeted and negatively regulated by miR-539. Then, we introduced a series of miR-539 mimics, miR-539 inhibitors, and small interfering RNA against SLPI plasmids into CGTHW-3 cells to examine the effects of miR-539 and SLPI on the expression of TGF-β1/Smads signaling pathway-, EMT-, and apoptosis-related factors, as well as cell proliferation, migration, invasion, and apoptosis. The obtained results indicated that CGTHW-3 cells treated with silenced SLPI or overexpressed miR-539 suppressed the cell proliferation, migration, invasion abilities, and resistance to apoptosis of PTC cells, corresponding to increased expression of Bcl-2-associated X protein, TGF-β1, Sekelsky mothers against dpp 4, and epithelial cadherin, and decreased B cell lymphoma 2, Vimentin, and N-cadherin. Altogether, we concluded that overexpressed miR-539 could inhibit the PTC cell proliferation and promote apoptosis and EMT by targeting SPLI via activation of the TGF-β1/Smads signaling pathway.  相似文献   

10.
RET/PTC1 is a rearranged form of the RET tyrosine kinase commonly seen in papillary thyroid carcinomas. It has been shown that RET/PTC1 decreases expression of the sodium/iodide symporter (NIS), the molecule that mediates radioiodide therapy for thyroid cancer. Using proteomic analysis, we identify hsp90 and its co-chaperone p50cdc37 as novel proteins associated with RET/PTC1. Inhibition of hsp90 function with 17-allylamino-17-demothoxygeldanamycin (17-AAG) reduces RET/PTC1 protein levels. Furthermore, 17-AAG increases radioiodide accumulation in thyroid cells, mediated in part through a protein kinase A-independent mechanism. We show that 17-AAG does not increase the total amount of NIS protein or cell surface NIS localization. Instead, 17-AAG increases radioiodide accumulation by decreasing iodide efflux. Finally, the ability of 17-AAG to increase radioiodide accumulation is not restricted to thyroid cells expressing RET/PTC1. These findings suggest that 17-AAG may be useful as a chemotherapeutic agent, not only to inhibit proliferation but also to increase the efficacy of radioiodide therapy in patients with thyroid cancer.  相似文献   

11.
12.
13.
14.
According to classic theory of neogenesis, cancer arises from well-differentiated cell that in response to variety of factors de-differentiates, becomes able to proliferate without control and/or loses its ability to undergo apoptosis. According to another theory, cancers (at least cancers of some organs) originate from stem cells, which "by definition" are poorly differentiated and able to proliferate indefinitely. Therefore a lower number of abnormal events is necessary for these cells to escape proliferation-controlling mechanisms. With regard to papillary thyroid cancers it is still thought that it arises from well-differentiated thyreocyte. One of the characteristic features of cancer cell is chromosomal instability. Lowest number of such abnormalities is observed in well-differentiated thyroid cancers (including papillary cancer), intermediate - in poorly-differentiated cancers, while highest - in anaplastic cancers. Microarray analysis shows that despite of clinical heterogeneity, gene expression profiles of papillary cancers are very similar. Genetic anomalies predisposing to the development of papillary cancer most commonly regard proteins that possess kinase activity. Kinases phosphorylate other proteins, and play an extremely important role in signal transduction from outside the cell as well as inside the cell. Constitutive activation of some kinases may lead to the excessive and/or permanent activation of some transduction pathways specific for mitogens or growth factors. This results in excessive proliferation. The best known protein of such type which function is altered in papillary thyroid cancers is RET - a membrane-located growth factor-receptor with kinase activity. RET gene undergoes different rearrangements in this type of cancer. There are approximately 10 RET rearrangements known, with RET/PTC3 and RET/PTC1 being most common. In this anomaly kinase domain-encoding 3' end of RET gene is aberrantly bound to 5' end of another gene. Fusion protein synthesized on such hybrid template is not present in the cell membrane but in the cytoplasm, where it permanently activates transduction pathway specific for RET. NTRK1 gene encoding a member of family of neuronal growth factor receptors containing thyrosine kinase domain is also rearranged in papillary cancers. However, genes fused to its kinase domain-encoding sequence are different from the ones fused to RET. MET, a gene encoding another membrane protein with thyrosine kinase activity, which acts as a growth factor-receptor, is overexpressed in 70%-90% of papillary thyroid cancers. BRAF gene encoding another yet kinase transducing signals from RAS and RAF to the cell is mutated at position 1796 (T/A, amino acid substitution V599E) in 38-69% of papillary cancers. The presence of this activatory mutation is associated with higher degree of clinical advancement of the disease. In addition, in majority of papillary cancers tested, mutations of the genes encoding nuclear triiodothyronine receptors were found. Transgenic mice with both TRB allele replaced with dominant-negative TRB mutants develop aggressive thyroid cancers. Progression from papillary to anaplastic cancer is most possibly caused by the occurrence of additional anomalies within P53, RAS, NM23,b-catenin gene and other genes.  相似文献   

15.
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown.Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development.Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay.Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression.Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.  相似文献   

16.
17.
Long intergenic noncoding RNA 460 (LINC00460) has been identified as a critical regulator for multiple types of cancers. However, the biological role and underlying mechanism in human papillary thyroid carcinoma (PTC) still remain unclear and need to be uncovered. This study was aimed to ascertain the biological role and molecular mechanism of LINC00460 in PTC progression. Our findings revealed that the level of LINC00460 was significantly upregulated in PTC tissues and cell lines, which was positively correlated with advanced tumor–node–metastasis (TNM) stage and lymph node metastasis. Cellular experiments exhibited that knockdown of LINC00460 decreased proliferative, migratory, and invasive abilities of PTC cells. Mechanism assays noted that knockdown of LINC00460 suppressed cell proliferation, migration, and invasion, and inhibited expression of sphingosine kinase 2 (SphK2, a target of miR-613) in PTC cells, at least in part, by regulating miR-613. These findings suggested that LINC00460 could function as a competing endogenous RNA to regulate SphK2 expression by sponging miR-613 in PTC. Targeting LINC00460 could be a promising therapeutic strategy for patients with PTC.  相似文献   

18.
Papillary thyroid cancer (PTC) accounts for 80% of all thyroid cancers and seriously impacts the quality of people's lives. Long noncoding RNAs (lncRNAs) play an important role in PTC. In previous studies, thousands of lncRNAs were screened to study their potential relationships with PTC. The aim of this study was to investigate the effect of RPL34-AS1 in PTC and to explore its potential mechanisms. Bioinformatic analyses were performed to characterize the possible function and biological features of RPL34-AS1. Apoptosis, proliferation, and invasion were detected to assess the effect of RPL34-AS1. Cell proliferation was measured using a Cell Counting Kit-8 assay. Western blot analysis was used to assess the apoptosis proteins Bax and Bcl-2. Cell invasion was measured using a Transwell assay. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to examine RPL34-AS1, miR-3663-3P, and RGS4 expression. Dual-luciferase assay was performed to assess the binding of miR-3663-3P by RPL34-AS1. RIP experiment was used to verify the combination between miR-3663-3p and RGS4. We found that overexpression of RPL34-AS1 could inhibit proliferation and invasion while promoting apoptosis in PTC cell lines. Moreover, RPL34-AS1 could also competitively bind miR-3663-3p and exert its function by regulating the miR-3663-3p/RGS4 in PTC cell lines. We found a previously uncharacterized lncRNA, RPL34-AS1, and studied its function and mechanism in PTC. Our research will provide new insights into PTC and new clues for its clinical treatment.  相似文献   

19.
Long intergenic non-coding RNA 152 (LINC00152) was reported to be tightly linked to tumorigenesis and progression in multiple cancers. However, its biological role and modulatory mechanism in papillary thyroid carcinoma (PTC) has not been elucidated. In this study, we determined the expression levels of LINC00152 in PTC tissues and cell lines by quantitative real time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation, migration, and invasion were measured by a Cell Counting Kit-8 assay, colony formation analysis, wound healing, and transwell invasion assay, respectively. A luciferase reporter assay and qRT-PCR were used to determine whether LINC00152 interacts with miR-497 directly. We established a xenograft mouse model to examine the underlying molecular mechanism and effect of LINC00152 on tumor growth in vivo. We found that LINC00152 expression was significantly increased in PTC tissues and derived cell lines. LINC00152 knockdown significantly inhibited proliferation, colony formation, migration, and invasion in vitro, and impaired tumor growth in vivo. We revealed that LINC00152 functioned as a competing endogenous RNA to the miR-497 sponge, downregulating its downstream target brain-derived neurotrophic factor (BDNF), which is an oncogene in thyroid cancer. These findings suggest that LINC00152 is responsible for PTC cell proliferation and invasion and exerts its function by regulating the miR-497/BDNF axis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号