首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The small chaperone protein Hsp27 confers resistance to apoptosis, and therefore is an attractive anticancer drug target. We report here a novel mechanism underlying the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitizing activity of the small molecule LY303511, an inactive analog of the phosphoinositide 3-kinase inhibitor inhibitor LY294002, in HeLa cells that are refractory to TRAIL-induced apoptosis. On the basis of the fact that LY303511 is derived from LY294002, itself derived from quercetin, and earlier findings indicating that quercetin and LY294002 affected Hsp27 expression, we investigated whether LY303511 sensitized cancer cells to TRAIL via a conserved inhibitory effect on Hsp27. We provide evidence that upon treatment with LY303511, Hsp27 is progressively sequestered in the nucleus, thus reducing its protective effect in the cytosol during the apoptotic process. LY303511-induced nuclear translocation of Hsp27 is linked to its sustained phosphorylation via activation of p38 kinase and MAPKAP kinase 2 and the inhibition of PP2A. Furthermore, Hsp27 phosphorylation leads to the subsequent dissociation of its large oligomers and a decrease in its chaperone activity, thereby further compromising the death inhibitory activity of Hsp27. Furthermore, genetic manipulation of Hsp27 expression significantly affected the TRAIL sensitizing activity of LY303511, which corroborated the Hsp27 targeting activity of LY303511. Taken together, these data indicate a novel mechanism of small molecule sensitization to TRAIL through targeting of Hsp27 functions, rather than its overall expression, leading to decreased cellular protection, which could have therapeutic implications for overcoming chemotherapy resistance in tumor cells.  相似文献   

2.
ObjectivesBone tissue engineering based on adipose‐derived stem cells (ASCs) is expected to become a new treatment for diabetic osteoporosis (DOP) patients with bone defects. However, compared with control ASCs (CON‐ASCs), osteogenic potential of DOP‐ASCs is decreased, which increased the difficulty of bone reconstruction in DOP patients. Moreover, the cause of the poor osteogenesis of ASCs in a hyperglycemic microenvironment has not been elucidated. Therefore, this study explored the molecular mechanism of the decline in the osteogenic potential of DOP‐ASCs from the perspective of epigenetics to provide a possible therapeutic target for bone repair in DOP patients with bone defects.Materials and methodsAn animal model of DOP was established in mice. CON‐ASCs and DOP‐ASCs were isolated from CON and DOP mice, respectively. AK137033 small interfering RNA (SiRNA) and an AK137033 overexpression plasmid were used to regulate the expression of AK137033 in CON‐ASCs and DOP‐ASCs in vitro. Lentiviruses that carried shRNA‐AK137033 or AK137033 cDNA were used to knockdown or overexpress AK137033, respectively, in CON‐ASCs and DOP‐ASCs in vivo. Hematoxylin and eosin (H&E), Masson''s, alizarin red, and alkaline phosphatase (ALP) staining, micro‐computed tomography (Micro‐CT), flow cytometry, qPCR, western blotting, immunofluorescence, and bisulfite‐specific PCR (BSP) were used to analyze the functional changes of ASCs.ResultsThe DOP mouse model was established successfully. Compared with CON‐ASCs, AK137033 expression, the DNA methylation level of the sFrp2 promoter region, Wnt signaling pathway markers, and the osteogenic differentiation potential were decreased in DOP‐ASCs. In vitro experiments showed that AK137033 silencing inhibited the Wnt signaling pathway and osteogenic ability of CON‐ASCs by reducing the DNA methylation level in the sFrp2 promoter region. Additionally, overexpression of AK137033 in DOP‐ASCs rescued these changes caused by DOP. Moreover, the same results were obtained in vivo.ConclusionsLncRNA‐AK137033 inhibits the osteogenic potential of DOP‐ASCs by regulating the Wnt signaling pathway via modulating the DNA methylation level in the sFrp2 promoter region. This study provides an important reference to find new targets for the treatment of bone defects in DOP patients.  相似文献   

3.
Our previous work using a melanoma progression model composed of melanocytic cells (melanocytes, primary and metastatic melanoma samples) demonstrated various deregulated genes, including a few known lncRNAs. Further analysis was conducted to discover novel lncRNAs associated with melanoma, and candidates were prioritized for their potential association with invasiveness or other metastasis‐related processes. In this sense, we found the intergenic lncRNA U73166 (ENSG00000230454) and decided to explore its effects in melanoma. For that, we silenced the lncRNA U73166 expression using shRNAs in a melanoma cell line. Next, we experimentally investigated its functions and found that migration and invasion had significantly decreased in knockdown cells, indicating an essential association of lncRNA U73166 for cancer processes. Additionally, using naïve and vemurafenib‐resistant cell lines and data from a patient before and after resistance, we found that vemurafenib‐resistant samples had a higher expression of lncRNA U73166. Also, we retrieved data from the literature that indicates lncRNA U73166 may act as a mediator of RNA processing and cell invasion, probably inducing a more aggressive phenotype. Therefore, our results suggest a relevant role of lncRNA U73166 in metastasis development. We also pointed herein the lncRNA U73166 as a new possible biomarker or target to help overcome clinical vemurafenib resistance.  相似文献   

4.
5.
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.  相似文献   

6.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Phylum Spirochaetes

Non-Bacterial genomes

  相似文献   

7.
8.
9.
The primary objective of this study was to construct an immune-related long noncoding RNAs (IRLs) classifier to precisely predict the prognosis and immunotherapy response of patients with thymic epithelial tumors (TET). Based on univariable Cox regression analysis and Lasso regression, six prognosis-related IRLs (AC004466.3, AC138207.2, AC148477.2, AL450270.1, HOXB-AS1 and SNHG8) were selected to build an IRL classifier. Importantly, results of qRT-PCR validated that higher expression levels of AC138207.2, AC148477.2, AL450270.1 and SNHG8 as well as lower expression levels of AC004466.3, and HOXB-AS1 in TETs samples compared with normal controls. The IRL classifier could effectively classify patients into the low-risk and high-risk groups based on the different survival parameters. In terms of predictive ability and clinical utility, the IRL classifier was superior to Masaoka staging system. Additionally, IRL classifier is significantly associated with immune cells infiltration (dendritic cells, activated CD4 memory T cells and tumor-infiltrating lymphocyte (TIL), T cell subsets in particular), immune microenvironment (immune score and immune checkpoint inhibitors) and immunogenicity (TMB) in TETs, which hints that IRL classifier is tightly correlated with immune characteristics and might guide more effective immunotherapy strategies for TETs patients. Encouragingly, according to TIDE algorithm, there were more immunotherapy responders in the low-risk IRL subgroup and the IRL score was robustly negatively linked to the immunotherapeutic response. To sum up, the IRL classifier was established, which can be used to predict the prognosis, immune infiltration status, immunotherapy response in TETs patients, and may facilitate personalized counseling for immunotherapy.  相似文献   

10.
Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.  相似文献   

11.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office.

Non-Bacterial genomes

  相似文献   

12.
A distinct pathovar of Salmonella enterica serovar Typhimurium, ST313, has emerged in sub-Saharan Africa as a major cause of fatal bacteremia in young children and HIV-infected adults. D23580, a multidrug resistant clinical isolate of ST313, was previously shown to have undergone genome reduction in a manner that resembles that of the more human-restricted pathogen, Salmonella enterica serovar Typhi. It has since been shown through tissue distribution studies that D23580 is able to establish an invasive infection in chickens. However, it remains unclear whether ST313 can cause lethal disease in a non-human host following a natural course of infection. Herein we report that D23580 causes lethal and invasive disease in a murine model of infection following peroral challenge. The LD50 of D23580 in female BALB/c mice was 4.7 x 105 CFU. Tissue distribution studies performed 3 and 5 days post-infection confirmed that D23580 was able to more rapidly colonize the spleen, mesenteric lymph nodes and gall bladder in mice when compared to the well-characterized S. Typhimurium strain SL1344. D23580 exhibited enhanced resistance to acid stress relative to SL1344, which may lend towards increased capability to survive passage through the gastrointestinal tract as well as during its intracellular lifecycle. Interestingly, D23580 also displayed higher swimming motility relative to SL1344, S. Typhi strain Ty2, and the ST313 strain A130. Biochemical tests revealed that D23580 shares many similar metabolic features with SL1344, with several notable differences in the Voges-Proskauer and catalase tests, as well alterations in melibiose, and inositol utilization. These results represent the first full duration infection study using an ST313 strain following the entire natural course of disease progression, and serve as a benchmark for ongoing and future studies into the pathogenesis of D23580.  相似文献   

13.
DNA sequencing has been revolutionized by the development of high-throughput sequencing technologies. Plummeting costs and the massive throughput capacities of second and third generation sequencing platforms have transformed many fields of biological research. Concurrently, new data processing pipelines made rapid de novo genome assemblies possible. However, high quality data are critically important for all investigations in the genomic era. We used chloroplast genomes of one Oryza species (O. australiensis) to compare differences in sequence quality: one genome (GU592209) was obtained through Illumina sequencing and reference-guided assembly and the other genome (KJ830774) was obtained via target enrichment libraries and shotgun sequencing. Based on the whole genome alignment, GU592209 was more similar to the reference genome (O. sativa: AY522330) with 99.2% sequence identity (SI value) compared with the 98.8% SI values in the KJ830774 genome; whereas the opposite result was obtained when the SI values in coding and noncoding regions of GU592209 and KJ830774 were compared. Additionally, the junctions of two single copies and repeat copies in the chloroplast genome exhibited differences. Phylogenetic analyses were conducted using these sequences, and the different data sets yielded dissimilar topologies: phylogenetic replacements of the two individuals were remarkably different based on whole genome sequencing or SNP data and insertions and deletions (indels) data. Thus, we concluded that the genomic composition of GU592209 was heterogeneous in coding and non-coding regions. These findings should impel biologists to carefully consider the quality of sequencing and assembly when working with next-generation data.  相似文献   

14.
Multi-drug resistant (MDR) bacteria associated with wounds are extremely escalating. This study aims to survey different wounds in Alexandria hospitals, North Egypt, to explore the prevalence and characteristics of MDR bacteria for future utilization in antibacterial wound dressing designs. Among various bacterial isolates, we determined 22 MDR bacteria could resist different classes of antibiotics. The collected samples exhibited the prevalence of mono-bacterial infections (60%), while 40% included poly-bacterial species due to previous antibiotic administration. Moreover, Gram-negative bacteria showed dominance with a ratio of 63.6%, while Gram-positive bacteria reported 36.4%. Subsequently, the five most virulent bacteria were identified following the molecular approach by 16S rRNA and physiological properties using the VITEK 2 automated system. They were deposited in GenBank as Staphylococcus haemolyticus MST1 (KY550377), Pseudomonas aeruginosa MST2 (KY550378), Klebsiella pneumoniae MST3 (KY550379), Escherichia coli MST4 (KY550380), and Escherichia coli MST5 (KY550381). In terms of isolation source, S. haemolyticus MST1 was isolated from a traumatic wound, while P. aeruginosa MST2 and E. coli MST4 were procured from hernia surgical wounds, and K. pneumoniae MST3 and E. coli MST5 were obtained from diabetic foot ulcers. Antibiotic sensitivity tests exposed that K. pneumoniae MST3, E. coli MST4, and E. coli MST5 are extended-spectrum β-lactamases (ESBLs) bacteria. Moreover, S. haemolyticus MST1 belongs to the methicillin-resistant coagulase-negative staphylococcus (MRCoNS), whereas P. aeruginosa MST2 exhibited resistance to common empirical bactericidal antibiotics. Overall, the study provides new insights into the prevalent MDR bacteria in Egypt for further use as specific models in formulating antibacterial wound dressings.  相似文献   

15.
Long non-coding RNAs (lncRNAs) are key regulatory molecules involved in a variety of biological processes and human diseases. However, the pathological effects of lncRNAs on primary varicose great saphenous veins (GSVs) remain unclear. The purpose of the present study was to identify aberrantly expressed lncRNAs involved in the prevalence of GSV varicosities and predict their potential functions. Using microarray with 33,045 lncRNA and 30,215 mRNA probes, 557 lncRNAs and 980 mRNAs that differed significantly in expression between the varicose great saphenous veins and control veins were identified in six pairs of samples. These lncRNAs were sub-grouped and mRNAs expressed at different levels were clustered into several pathways with six focused on metabolic pathways. Quantitative real-time PCR replication of nine lncRNAs was performed in 32 subjects, validating six lncRNAs (AF119885, AK021444, NR_027830, G36810, NR_027927, uc.345-). A coding-non-coding gene co-expression network revealed that four of these six lncRNAs may be correlated with 11 mRNAs and pathway analysis revealed that they may be correlated with another 8 mRNAs associated with metabolic pathways. In conclusion, aberrantly expressed lncRNAs for GSV varicosities were here systematically screened and validated and their functions were predicted. These findings provide novel insight into the physiology of lncRNAs and the pathogenesis of varicose veins for further investigation. These aberrantly expressed lncRNAs may serve as new therapeutic targets for varicose veins. The Human Ethnics Committee of Shanghai East Hospital, Tongji University School of Medicine approved the study (NO.: 2011-DF-53).  相似文献   

16.
Pathogenic Klebsiella pneumoniae, resistant to beta-lactam and quinolone drugs, is widely recognized as important bacteria causing array of diseases. The resistance property is obtained by acquisition of plasmid encoded blaTEM, blaSHV, blaCTX-M, QNRA, QNRB and QNRS genes. The aim of this study was to document the prevalence and association of these resistant genes in K. pneumoniae infecting patients in India. Approximately 97 and 76.7 % of the 73 K. pneumoniae isolates showed resistance towards beta-lactam and quinolone drugs respectively. Bla genes were detected in 74 % of K. pneumoniae isolates; with prevalence in the following order: blaTEM > blaSHV > blaCTXM. QNR genes were detected in 67 % samples. Chi-square analysis revealed significant association between presence of bla and qnr genes in our study (P value = 0.000125). Sequence analysis of some blaTEM, blaSHV, blaCTX-M and QNRB PCR products revealed presence of blaTEM1 (GenBank accession: JN193522), blaTEM116 (JN193523 and JN193524), blaSHV11, blaCTXM72 variants (JF523199) and QNRB1 (JN193526 and JN193527) in our samples.  相似文献   

17.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.

Phylum Euryarchaeota

Phylum Crenarchaeota

Phylum Deinococcus-Thermus

Phylum Proteobacteria

Phylum Tenericutes

Phylum Firmicutes

Phylum Actinobacteria

Non-Bacterial genomes

  相似文献   

18.
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.  相似文献   

19.
20.
A novel isolate belonging to the genus Streptomyces, strain SL-4T, was isolated from soil sample collected from a sanitary landfill, New Delhi, India. The taxonomic status of this isolate was studied by polyphasic approach including morphological, physiological and chemo-taxonomic characterization. Spore chains of SL-4T were open loops, hooks or extended spirals of wide diameter (retinaculiperti). The cell wall peptidoglycan of the isolate SL-4T contained L,L-diaminopimelic acid, suggesting that the strain has a cell wall of chemotype-I. The polar lipid profile of the isolate was of Type II, with phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The 16SrRNA gene sequence similarity between SL-4T and its phylogenetic relatives Streptomyces atrovirens NRRLB 16357T (DQ026672), S. albogriseolus NRRLB 1305T (AJ494865), S viridodiastaticus NBRC 13106T (AB184317), S. caelestis NRRL 2418T (X80824), S. flavoviridis NBRC 12772T (AB184842), S. pilosus NBRC 12807T (AB184161) and S. longispororuber NBRC 13488T (AB184440) was 99.65, 99.65, 99.64, 99.23, 99.15, 99.14 and 99.13 % respectively. Subsequent DNA–DNA hybridization experiments with the test strain and its clade members showed 55.27, 44.27, 36.86, and 15.65 % relatedness between SL-4T and its relatives S. atrovirens,S. albogriseolus, S. viridodiastaticus and S. longispororuber respectively. The genotypic and phenotypic data was analyzed to verify possibility of the isolate SL-4T representing novel member of the genus Streptomyces, for which the name S. antibioticalis is being proposed. The type strain is SL-4T (=CCM 7434T=MTCC 8588T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号