首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular therapies have shown immense promise in the treatment of nonhealing wounds. Cell sheets are an emerging strategy in tissue engineering, and these cell sheets are promising as a delivery method of mesenchymal stem cells to the wound bed. Cell sheet technology utilizes temperature dependent polymers to allow for lifting of cultured cells and extracellular matrix without the use of digestive enzymes. While mesenchymal stem cells (MSCs) have shown success in cell sheets for myocardial repair, examination of cell sheets in the field of wound healing has been limited. We previously developed a novel cell sheet composed of human adipose-derived stem cells (ASCs). Both single and triple layer cell sheets were examined in a full-thickness murine wound model. The treatment cell sheets were compared with untreated controls and analyzed at timepoints of 7, 14, 18 and 21 d. The ASC cell sheets showed increased healing at 7, 14 and 18 d, and this effect was increased in the triple layer cell sheet group. Future development of these cell sheets will focus on increasing angiogenesis in the wound bed, utilizing multiple cell types, and examining allogeneic cell sheets. Here we review our experiment, expand upon our future directions and discuss the potential of an off-the-shelf cell sheet. In the field of wound healing, such a cell sheet is both clinically and scientifically exciting.  相似文献   

2.
3.
BACKGROUNDImpaired wound healing can be associated with different pathological states. Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide. Mesenchymal stem cells (MSCs) possess the ability to regenerate tissues by secreting factors involved in promoting cell migration, proliferation and differentiation, while suppressing immune reactions. Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIMTo enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODSHuman umbilical cord MSCs (hU-MSCs) were isolated and characterized by surface markers, CD105, vimentin and CD90. For preconditioning, hU-MSCs were treated with isorhamnetin after selection of the optimized concentration (5 µmol/L) by cytotoxicity analysis. The migration potential of these MSCs was analyzed by the in vitro scratch assay. The healing potential of normal, and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound. Normal, and preconditioned MSCs (IH + MSCs) were transplanted after 72 h of burn injury and observed for 2 wk. Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTSThe scratch assay analysis showed a significant reduction in the scratch area in the case of IH + MSCs compared to the normal untreated MSCs at 24 h, while complete closure of the scratch area was observed at 48 h. Histological analysis showed reduced inflammation, completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH + MSCs. Gene expression analysis was time dependent and more pronounced in the case of IH + MSCs. Interleukin (IL)-1β, IL-6 and Bcl-2 associated X genes showed significant downregulation, while transforming growth factor β, vascular endothelial growth factor, Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound, showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSIONPreconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation, and improving tissue architecture and wound healing. The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.  相似文献   

4.
Cutaneous wounds persist as a health care crisis in spite of increased understanding of the cellular and molecular responses to injury. Contributing significantly to this crisis is the lack of reliable therapies for treatment of wounds that are slow to heal including chronic wounds and deep dermal wounds that develop hypertrophic scars. This article will review the growing evidence demonstrating the promise of multipotent mesenchymal stem/stromal (MSCs) for the treatment of impaired wound healing. MSCs are often referred to as mesenchymal stem cells despite concerns that these cells are not truly stem cells given the lack of evidence demonstrating self-renewal in vivo. Regardless, abundant evidence demonstrates the therapeutic potential of MSCs for repair and regeneration of damaged tissue due to injury or disease. To date, MSC treatment of acute and chronic wounds results in accelerated wound closure with increased epithelialization, granulation tissue formation and angiogenesis. Although there is evidence for MSC differentiation in the wound, most of the therapeutic effects are likely due to MSCs releasing soluble factors that regulate local cellular responses to cutaneous injury. Important challenges need to be overcome before MSCs can be used effectively to treat wounds that are slow to heal.  相似文献   

5.
《Phytomedicine》2014,21(3):247-253
In the present study, we report the effects of the ethanol extract from Mallotus philippinensis bark (EMPB) on mesenchymal stem cell (MSC) proliferation, migration, and wound healing in vitro and in a mouse model. Chemotaxis assays demonstrated that EMPB acted an MSC chemoattractant and that the main chemotactic activity of EMPB may be due to the effects of cinnamtannin B-1. Flow cytometric analysis of peripheral blood mononuclear cells in EMPB-injected mice indicated that EMPB enhanced the mobilization of endogenous MSCs into blood circulation. Bioluminescent whole-animal imaging of luciferase-expressing MSCs revealed that EMPB augmented the homing of MSCs to wounds. In addition, the efficacy of EMPB on migration of MSCs was higher than that of other skin cell types, and EMPB treatment improved of wound healing in a diabetic mouse model. The histopathological characteristics demonstrated that the effects of EMPB treatment resembled MSC-induced tissue repair. Taken together, these results suggested that EMPB activated the mobilization and homing of MSCs to wounds and that enhancement of MSC migration may improve wound healing.  相似文献   

6.
《Cytotherapy》2014,16(11):1467-1475
Background aimsMesenchymal stromal cells (MSCs) have been documented to improve delayed wound healing in diabetes, but the underlying mechanism remains obscure. We aimed to investigate whether the therapeutic effects on wounds was associated with metabolic alterations by paracrine action of MSCs.MethodsMSCs from mice with high-fat diet/streptozotocin–induced diabetes or wild-type C57BL/6 mice were evaluated for their paracrine potential in vitro using enzyme-linked immunosorbent assay and immunohistochemical staining assay. MSCs were then evaluated for their therapeutic potential in vivo using an excisional cutaneous wound model in mice with diabetes. Metabolic alterations and glucose transporter four (GLUT4) as well as PI3K/Akt signaling pathway expression after wounding were also examined.ResultsMSCs from normal mice expressed even more insulin-like growth factor-1 (IGF-1) than mice with diabetes, suggesting putative paracrine action. Furthermore, compared with IGF-1 knockdown MSCs, normal MSCs markedly accelerated wound healing, as revealed by higher wound closure rate and better healing quality at 21 days post-wound. By contrast, MSCs administration increased the level of insulin as well as GLUT4 and PI3K/Akt signaling pathway expression but repressed the biochemical indexes of glucose and lipid, resulting in obvious metabolic improvement.ConclusionsThese findings suggest that IGF-1 is an important paracrine factor that mediates the therapeutic effects of MSCs on wound healing in diabetes, and the benefits of MSCs may be associated with metabolism improvements, which would provide a new target for treatment.  相似文献   

7.
EGF and TGF-alpha in wound healing and repair   总被引:8,自引:0,他引:8  
Wound healing is a localized process which involves inflammation, wound cell migration and mitosis, neovascularization, and regeneration of the extracellular matrix. Recent data suggest the actions of wound cells may be regulated by local production of peptide growth factors which influence wound cells through autocrine and paracrine mechanisms. Two peptide growth factors which may play important roles in normal wound healing in tissues such as skin, cornea, and gastrointestinal tract are the structurally related peptides epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). EGF/TGF-alpha receptors are expressed by many types of cells including skin keratinocytes, fibroblasts, vascular endothelial cells, and epithelial cells of the GI tract. In addition, EGF or TGF-alpha are synthesized by several cells involved in wound healing including platelets, keratinocytes, and activated macrophages. Healing of a variety of wounds in animals and patients was enhanced by treatment with EGF or TGF-alpha. Epidermal regeneration of partial thickness burns on pigs or dermatome wounds on patients was accelerated with topical application of EGF or TGF-alpha, and EGF treatment accelerated healing of gastroduodenal ulcers. EGF also increased tensile strength of skin incisions in rats and corneal incisions in rabbits, cats, and primates. Additional research is needed to better define the roles of EGF, TGF-alpha and their receptor in normal wound healing, to determine if alterations have occurred in the EGF/TGF-alpha system in chronic wounds, and optimize vehicles for effective delivery of peptide growth factors to wounds.  相似文献   

8.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   

9.

Background

Chronic wounds present a major challenge in modern medicine. Even under optimal conditions, the healing process may lead to scarring and fibrosis. The ability of mesenchymal stem cells (MSCs) to differentiate into other cell types makes these cells an attractive therapeutic tool for cell transplantation. Both tissue-engineered construct and MSC therapy are among the current wound healing procedures and potential care. Chitosan has been widely applied in tissue engineering because of its biocompatibility and biodegradability.

Aim

The aim of the current work was to compare the efficiency of MSCs and chitosan dressing, alone or in combination treatment on wound healing.

Methods

This study was conducted on 15 rabbits, which were randomly divided in 3 groups based on the type of treatment with MSCs, chitosan dressing and combination of both. A full–thickness skin defect was excised from the right and left side of the back of each animals. Defects on right sides were filled with treatments and left side defects were left as control. Evaluation of the therapeutic effectiveness was performed through a variety of clinical and microscopical evaluations and measurements of the process of wound healing on days 7, 14, 21, and 28. Histological evaluation of wound healing was classified by different scoring systems.

Results

The data indicated that wounds treated with bone marrow derived MSC had enhanced cellularity and better epidermal regeneration. During the early stages of wound healing, the closure rate of bone marrow derived MSC-treated wounds were significantly higher than other treatments (P < 0.05). Although the MSCs in the wound edges enhance the healing of the full–thickness wound, the healing process of chitosan treatment was slower than the control group.

Conclusion

This study revealed advanced granulation tissue formation and epithelialization in wounds treated with MSCs, and may suggests this treatment as an effective applicant in wound healing process. Chitosan scaffold dressings, whether alone or in combination with MSCs, have worsened the wound healing as compared to the control group.  相似文献   

10.
Cutaneous regeneration is a dynamic and complex process that requires a series of coordinated interactions involving epidermal cells, dermal cells, growth factors, the extracellular matrix (ECM), nerves and blood vessels at a damaged site. Mesenchymal stromal cells (MSCs) have been reported to participate in all afore-mentioned stages. Exosomes are one of the key secretory products of MSCs, resembling the effect of parental MSCs. They can shuttle various proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, and play important roles in cutaneous wound healing. Compared with MSCs, exosomes are more convenient to store and transport. Moreover, they avoid many risks associated with cell transplantation. Therefore, MSC-exosome–mediated therapy may be more safe and efficient. In this review, we summarize the latest studies and observations on the role of MSC-exosome in the acute and chronic wound model and provide a comprehensive understanding of the role of exosomes in wound healing. This review can assist investigators in exploring new therapeutic strategies for enhancing the efficacy of MSC-exosome for cutaneous repair and regeneration.  相似文献   

11.
Non‐healing diabetic wounds are difficult to treat. They also create heavy financial burdens for both patients and society. Negative pressure wound therapy (NPWT) has been adopted to treat intractable wounds and has proved to be effective. However, the mechanisms that underlie the effects of this treatment are not entirely understood. Circulating fibrocytes are unique haematopoietic‐derived stem cells that have been reported to play a pivotal role in wound healing. Here, we have investigated the effect of NPWT on fibrocyte mobilization and the role of fibrocyte mobilization in the healing of diabetic wounds during NPWT. We show that the NPWT group exhibited 2.6‐fold to 12.1‐fold greater numbers of tail vein‐injected PKH‐26‐labelled fibrocytes in the diabetic wound sites compared with the control group. We also demonstrate that the full‐thickness skin wounds treated with NPWT exhibit significantly reduced mRNA and protein expression, blood vessel density and proliferating cells when exogenous fibrocyte mobilization is inhibited. We speculate that systemic mobilization of fibrocytes during NPWT may be a mechanism for healing intractable wounds in a diabetic rat model experiment and that enhancement of cell mobilization may represent a potential treatment idea for intractable wound healing across all fields of surgery.  相似文献   

12.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   

13.
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain prob-lematic. Mesenchymal stem cells(MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In ad-dition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoim-mune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.  相似文献   

14.
The technique of epidermal cell culture developed by Green and colleagues made a breakthrough in the treatment of massive wounds in vivo with grown cells in vitro. In the past two decades, progress of culture methods and clinical practice have been made and now it is possible to treat extensive skin defect with large amounts of cultured epithelium. Since 1985, we have been successfully used cultured epidermis as autografts for the permanent coverage of full-thickness burn wounds or excised burn scars, giant nevi, tattoos and so on. Furthermore, cultured epidermis has been available as allografts to promote the healing of chronic skin ulcers or deep dermal burn. In this paper we describe our clinical experience of cultured epithelium grafting for the treatment of wounds and predict new trial of wound management and regeneration based on tissue engineering concept.  相似文献   

15.
糖尿病患者的皮肤组织易受内源性及外源性的各种损伤,且创面具有愈合慢、易感染等特点,这种特点在下肢皮肤创伤中表现尤为突出,常伴有高截肢风险,故糖尿病皮肤损伤可严重影响患者的生活质量。间充质干细胞(MSCs)是一类多能干细胞,其具有易分离、易培养、多向分化和免疫源性低等特征,目前已被广泛应用于创伤修复、组织再生等研究。对于糖尿病皮肤损伤,MSCs的临床移植治疗已成为继药物、手术之后的又一种治疗新技术。本文结合MSCs的生物学特性,对其应用在糖尿病皮肤损伤方面的研究进展做一综述。  相似文献   

16.
Background. Mesenchymal stromal cells (MSCs) promote wound healing, including after radiotherapy (RT) and surgery. The use of MSCs in regenerative medicine in the context of malignancy, such as to enhance wound healing post-RT/surgery in patients with soft tissue sarcomas (STSs), requires safety validation. The aim of this study was to determine the effects of human MSCs on STS growth in vitro and local recurrence and metastasis in vivo. Methods. Human primary STS and HT-1080 fibrosarcoma lines were transduced to express luciferase/eGFP (enhanced green fluorescent protein). Sarcoma cells were co-cultured or co-injected with bone marrow–derived MSCs for growth studies. Xenograft tumor models were established with STS lines in NOD/SCID/γcnull mice. To emulate a clinical scenario, subcutaneous tumors were treated with RT/surgery prior to MSC injection into the tumor bed. Local and distant tumor recurrence was studied using histology and bioluminescence imaging. Results. MSCs did not promote STS proliferation upon co-culture in vitro, which was consistent among MSCs from different donors. Co-injection of MSCs with sarcoma cells in mice exhibited no significant tumor-stimulating effect, compared with control mice injected with sarcoma cells alone. MSC administration after RT/surgery had no effect on local recurrence or metastasis of STS. Discussion. These studies are important for the establishment of a safety profile for MSC administration in patients with STS. Our data suggest that MSCs are safe in STS management after standard of care RT/surgery, which can be further investigated in early-phase clinical trials to also determine the efficacy of MSCs in reducing morbidity and to mitigate wound complications in these patients.  相似文献   

17.
Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP‐labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full‐thickness cutaneous wound site in streptozotocin‐induced diabetic mice. Wounds treated with MSC‐ADM demonstrated an increased percentage of wound closure. The treatment of MSC‐ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col‐I) fibers synthesis via second harmonic generation imaging. The synthesis of Col‐I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP‐labeled MSCs during wound healing was simultaneously traced via two‐photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo‐multiplier tube.   相似文献   

18.
Adult mesenchymal stem cells (MSCs) have the capacity for self-renewal and for differentiating into a variety of cells and tissues. They may leave their niche to migrate to remote tissues and play a critical role in wound repair and tissue regeneration. Because of their multipotency, easy isolation and culture, highly expansive potential, and immunosuppression properties, these cells may be an attractive therapeutic tool for regenerative medicine and tissue engineering. Several studies have indicated a contribution of MSCs to reconstituting skin in cutaneous wounds, but problems still need resolution before MSCs can be widely used clinically. This review focuses mainly on the benefits of MSCs in skin wound healing and tissue regeneration and on the questions that remain to be answered before MSCs can be used in clinical practice. This study was supported in part by the National Natural Science Foundation of China (30730090, 30672176, 30500194) and by State Key Development Program of Basic Research of China (973 Program, 2005CB522603).  相似文献   

19.
With the advent of aging society, the effects of aging on all aspects of the body are attracting more and more attention. Among them, the increasing incidence of chronic wounds in the elderly not only affects the quality of the elderly’s life significantly, but also brings a heavy medical burden on society. Delayed and poor wound healing increases the possibility of severe infections. To find out a solution for infection and chronic wounds, it is necessary to clarify the specific mechanisms of wound healing and possible intervention targets. Wound healing is a complex physiological process in the human body, which involves the coordinated activation of multiple cell types and signaling pathways. The role of senescent cells in wound healing is causing growing attention in recent years. It was thought that wound healing needs to take a longer time in elder people. In recent years, it has been found that senescent cells promote wound healing. So far, the effects of senescent cells on the efficiency and quality of wound healing and its specific mechanism have not been fully clarified. What is certain is that different types of senescent cells and even different subtypes of the same senescent cells play different roles in fast and chronic wound healing. It is not only the heterogeneity of the senescent cell itself, but also the difference in the surrounding microenvironment that determines the effect of senescent cells on wound healing. The study of its mechanism is helpful to find a way to promote the healing of wounds. It is worth noting that senescent cells themselves may also induce poor wound prognosis, such as chronic wounds, inflammation and decreased anti-infection ability. Therefore, the ideal treatment strategy to apply senescent cells will be a comprehensive plan that maximizes the efficiency and quality of wound healing, while minimizing the risk of senescent cells itself becoming an inducement for chronic wounds.  相似文献   

20.
Li H  Fu X 《Cell and tissue research》2012,348(3):371-377
Mesenchymal stem cells (MSCs) are multipotent cells with the capacity for self-renewal and differentiation and have a broad tissue distribution. These characteristics make them candidate cells for wound healing and regeneration in a variety of disorders. Endogenous MSCs or exogenously delivered MSCs can traffic and migrate to injured tissue and participate in the healing of this tissue. The concentrated conditioned medium from MSCs can modulate wound repair without MSCs being present in the wound. The therapeutic effects of MSCs might be attributable to their ability to differentiate and transdifferentiate into tissue-specific cells, to fuse with the resident cells, to secrete a wide array of paracrine factors in order to stimulate the survival and functional recovery of the resident cells, or to regulate the local microenviroment or niche and immune response. These mechanisms are probably independent but not mutually exclusive. In many circumstances, a combination of these protective mechanisms might work together to affect cutaneous wound healing. This review gives a brief overview and discusses the mechanisms by which MSCs promote skin repair and regeneration, although the specific mechanisms in each type of cutaneous wound are still unclear and controversial. A comprehensive understanding of the mechanisms should allow us to find advanced and better treatment strategies for various skin diseases, even those that are currently incurable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号