首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), resides and replicates within phagocytes and persists in susceptible hosts by modulating protective innate immune responses. Furthermore, M. tuberculosis promotes T helper 2 (Th2) immune responses by altering the balance of T cell polarizing cytokines in infected cells. However, cytokines that regulate Th2 cell differentiation during TB infection remain unknown. Here we show that IL-1β, produced by phagocytes infected by virulent M. tuberculosis strain H37Rv, directs Th2 cell differentiation. In sharp contrast, the vaccine strain bacille Calmette-Guérin as well as RD-1 and ESAT-6 mutants of H37Rv failed to induce IL-1β and promote Th2 cell differentiation. Furthermore, ESAT-6 induced IL-1β production in dendritic cells (DCs), and CD4+ T cells co-cultured with infected DCs differentiated into Th2 cells. Taken together, our findings indicate that IL-1β induced by RD-1/ESAT-6 plays an important role in the differentiation of Th2 cells, which in turn facilitates progression of TB by inhibiting host protective Th1 responses.  相似文献   

2.
The human immunity-related GTPase M (IRGM) has been shown to be critically involved in regulating autophagy as a means of disposing cytosolic cellular structures and of reducing the growth of intracellular pathogens in vitro. This includes Mycobacterium tuberculosis, which is in agreement with findings indicating that M. tuberculosis translocates from the phagolysosome into the cytosol of infected cells, where it becomes exposed to autophagy. To test whether IRGM plays a role in human infection, we studied IRGM gene variants in 2010 patients with pulmonary tuberculosis (TB) and 2346 unaffected controls. Mycobacterial clades were classified by spoligotyping, IS6110 fingerprinting and genotyping of the pks1/15 deletion. The IRGM genotype −261TT was negatively associated with TB caused by M. tuberculosis (OR 0.66, CI 0.52–0.84, Pnominal 0.0009, Pcorrected 0.0045) and not with TB caused by M. africanum or M. bovis (OR 0.95, CI 0.70–1.30. P 0.8). Further stratification for mycobacterial clades revealed that the protective effect applied only to M. tuberculosis strains with a damaged pks1/15 gene which is characteristic for the Euro-American (EUAM) subgroup of M. tuberculosis (OR 0.63, CI 0.49–0.81, Pnominal 0.0004, Pcorrected 0.0019). Our results, including those of luciferase reporter gene assays with the IRGM variants −261C and −261T, suggest a role for IRGM and autophagy in protection of humans against natural infection with M. tuberculosis EUAM clades. Moreover, they support in vitro findings indicating that TB lineages capable of producing a distinct mycobacterial phenolic glycolipid that occurs exclusively in strains with an intact pks1/15 gene inhibit innate immune responses in which IRGM contributes to the control of autophagy. Finally, they raise the possibility that the increased frequency of the IRGM −261TT genotype may have contributed to the establishment of M. africanum as a pathogen in the West African population.  相似文献   

3.
Helminthic infections afflict over 1.5 billion people worldwide, while Mycobacterium tuberculosis infects one third of the world''s population, resulting in 2 million deaths per year. Although tuberculosis and helminthic infections coexist in many parts of the world, and it has been demonstrated that the T-helper 2 and T-regulatory cell responses elicited by helminths can affect the ability of the host to control mycobacterial infection, it is still unclear whether helminth infections in fact affect tuberculosis disease. In this review article, current progress in the knowledge about the immunomodulation induced by helminths to diminish the protective immune responses to bacille Calmette-Guerin vaccination is reviewed, and the knowledge about the types of immune responses modulated by helminths and the consequences for tuberculosis are summarized. In addition, recent data supporting the significant reduction of both M. tuberculosis antigen-specific Toll-like receptor (TLR) 2 and TLR9 expression, and pro-inflammatory cytokine responses to TLR2 and TLR9 ligands in individuals with M. tuberculosis and helminth co-infection were discussed. This examination will allow to improve understanding of the immune responses to mycobacterial infection and also be of great relevance in combating human tuberculosis.  相似文献   

4.
CD4+CD25+Foxp3+ Regulatory T cells (Treg) and programmed death-1 (PD-1) molecules have emerged as pivotal players in immune suppression of chronic diseases. However, their impact on the disease severity, therapeutic response and restoration of immune response in human tuberculosis remains unclear. Here, we describe the possible role of Treg cells, their M. tuberculosis driven expansion and contribution of PD-1 pathway to the suppressive function of Treg cells among pulmonary tuberculosis (PTB) patients. Multicolor flow cytometry, cell culture, cells sorting and ELISA were employed to execute the study. Our results showed significant increase in frequency of antigen-reactive Treg cells, which gradually declined during successful therapy and paralleled with decline of M. tuberculosis–specific IL-10 along with elevation of IFN-γ production, and raising the IFN-γ/IL-4 ratio. Interestingly, persistence of Treg cells tightly correlated with MDR tuberculosis. Also, we show that blocking PD-1/PD-L1 pathway abrogates Treg-mediated suppression, suggesting that the PD-1/PD-L1 pathway is required for Treg-mediated suppression of the antigen-specific T cells. Treg cells possibly play a role in dampening the effector immune response and abrogating PD-1 pathway on Treg cells significantly rescued protective T cell response, suggesting its importance in immune restoration among tuberculosis patients.  相似文献   

5.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence.  相似文献   

6.
Tuberculosis affects nine million individuals and kills almost two million people every year. The only vaccine available, Bacillus Calmette-Guerin (BCG), has been used since its inception in 1921. Although BCG induces host-protective T helper 1 (Th1) cell immune responses, which play a central role in host protection, its efficacy is unsatisfactory, suggesting that additional methods to enhance protective immune responses are needed. Recently we have shown that simultaneous inhibition of Th2 cells and Tregs by using the pharmacological inhibitors suplatast tosylate and D4476, respectively, dramatically enhances Mycobacterium tuberculosis clearance and induces superior Th1 responses. Here we show that treatment with these two drugs during BCG vaccination dramatically improves vaccine efficacy. Furthermore, we demonstrate that these drugs induce a shift in the development of T cell memory, favoring central memory T (Tcm) cell responses over effector memory T (Tem) cell responses. Collectively, our findings provide evidence that simultaneous inhibition of Th2 cells and Tregs during BCG vaccination promotes vaccine efficacy.  相似文献   

7.
Tuberculosis (TB) is responsible for nearly 1.4 million deaths globally every year and continues to remain a serious threat to human health. The problem is further complicated by the growing incidence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), emphasizing the need for the development of new drugs against this disease. Phagosomal maturation arrest is an important strategy employed by Mycobacterium tuberculosis to evade the host immune system. Secretory acid phosphatase (SapM) of M.tuberculosis is known to dephosphorylate phosphotidylinositol 3-phosphate (PI3P) present on phagosomes. However, there have been divergent reports on the involvement of SapM in phagosomal maturation arrest in mycobacteria. This study was aimed at reascertaining the involvement of SapM in phagosomal maturation arrest in M.tuberculosis. Further, for the first time, we have also studied whether SapM is essential for the pathogenesis of M.tuberculosis. By deleting the sapM gene of M.tuberculosis, we demonstrate that MtbΔsapM is defective in the arrest of phagosomal maturation as well as for growth in human THP-1 macrophages. We further show that MtbΔsapM is severely attenuated for growth in the lungs and spleen of guinea pigs and has a significantly reduced ability to cause pathological damage in the host when compared with the parental strain. Also, the guinea pigs infected with MtbΔsapM exhibited a significantly enhanced survival when compared with M.tuberculosis infected animals. The importance of SapM in phagosomal maturation arrest as well as in the pathogenesis of M.tuberculosis establishes it as an attractive target for the development of new therapeutic molecules against tuberculosis.  相似文献   

8.
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-κB signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4+ T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.  相似文献   

9.
Humans are frequently exposed to various airborne allergens. In addition to producing antibodies, B cells participate in immune responses via various mechanisms. The roles of B cells in allergic airway inflammation and asthma have been controversial. We examined the functional importance of B cells in a mouse model of asthma, in which mice were exposed repeatedly to common airborne allergens. Naïve wild-type BALB/c mice or B cell-deficient JH−/− mice were exposed intranasally to a cocktail of allergen extracts, including Alternaria, Aspergillus, and house dust mite, every other day for two weeks. Ovalbumin was included in the cocktail to monitor the T cell immune response. Airway inflammation, lung pathology, and airway reactivity were analyzed. The airway exposure of naïve wild type mice to airborne allergens induced robust eosinophilic airway inflammation, increased the levels of Th2 cytokines and chemokines in the lung, and increased the reactivity to inhaled methacholine. These pathological changes and immune responses were attenuated in B cell-deficient JH−/− mice. The allergen-induced expansion of CD4+ T cells was impaired in the lungs and draining lymph nodes of JH−/− mice. Furthermore, lymphocytes from JH−/− mice failed to produce Th2 cytokines in response to ovalbumin re-stimulation in vitro. Our results suggest that B cells are required for the optimal development of Th2-type immune responses and airway inflammation when exposed to common airborne allergens. The therapeutic targeting of B cells may be beneficial to treat asthma in certain patients.  相似文献   

10.
Thymic stromal lymphopoietin (TSLP) has been implicated in the development of allergic inflammation by promoting Th2-type responses and has become a potential therapeutic target. Using in vitro T cell differentiation cultures we were able to validate that TSLP played a more critical role in the early development of Th2 immune responses with less significant enhancement of already developed Th2 responses. Adoptive transfer of naive DO11.10 ovalbumin-specific T cells followed by airway exposure to ovalbumin showed an early impairment of Th2 immune response in TSLP−/− mice compared to wild type mice during the development of a Th2 response. In contrast, transfer of already differentiated Th2 cells into TSLP−/− mice did not change lung pathology or Th2 cytokine production upon ovalbumin challenge compared to transfer into wild type mice. An allergen-induced Th2 airway model demonstrated that there was only a difference in gob5 expression (a mucus-associated gene) between wild type and TSLP−/− mice. Furthermore, when allergic animals with established disease were treated with a neutralizing anti-TSLP antibody there was no change in airway hyperreponsiveness (AHR) or Th2 cytokine production compared to the control antibody treated animals, whereas a change in gob5 gene expression was also observed similar to the TSLP−/− mouse studies. In contrast, when animals were treated with anti-TSLP during the initial stages of allergen sensitization there was a significant change in Th2 cytokines during the final allergen challenge. Collectively, these studies suggest that in mice TSLP has an important role during the early development of Th2 immune responses, whereas its role at later stages of allergic disease may not be as critical for maintaining the Th2-driven allergic disease.  相似文献   

11.

Background

Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65.

Methodology/Principal Findings

Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-γ production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-β and IL-10 production, which could be associated with long-term protection.

Conclusions/Significance

We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections.  相似文献   

12.
Evidence from genetic association and twin studies indicates that susceptibility to tuberculosis (TB) is under genetic control. One gene implicated in susceptibility to TB is that encoding interleukin-10 (IL10). In a group of 2010 Ghanaian patients with pulmonary TB and 2346 healthy controls exposed to Mycobacterium tuberculosis, among them 129 individuals lacking a tuberculin skin test (PPD) response, we genotyped four IL10 promoter variants at positions −2849 , −1082 , −819 , and −592 and reconstructed the haplotypes. The IL10 low-producer haplotype −2849A/−1082A/−819C/−592C, compared to the high-producer haplotype −2849G/−1082G/−819C/−592C, occurred less frequent among PPD-negative controls than among cases (OR 2.15, CI 1.3–3.6) and PPD-positive controls (OR 2.09, CI 1.2–3.5). Lower IL-10 plasma levels in homozygous −2849A/−1082A/−819C/−592C carriers, compared to homozygous −2849G/−1082G/−819C/−592C carriers, were confirmed by a IL-10 ELISA (p = 0.016). Although we did not observe differences between the TB patients and all controls, our results provide evidence that a group of individuals exposed to M. tuberculosis transmission is genetically distinct from healthy PPD positives and TB cases. In these PPD-negative individuals, higher IL-10 production appears to reflect IL-10-dependent suppression of adaptive immune responses and sustained long-term specific anergy.  相似文献   

13.
14.
Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naïve T cells, polarized CD4+ and CD8+ T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.  相似文献   

15.
The development of a new vaccine as a substitute for Bacillus Calmette–Guerin or to improve its efficacy is one of the many World Health Organization goals to control tuberculosis. Mycobacterial vectors have been used successfully in the development of vaccines against tuberculosis. To enhance the potential utility of Mycobacterium smegmatis as a vaccine, it was transformed with a recombinant plasmid containing the partial sequences of the genes Ag85c, MPT51, and HspX (CMX) from M. tuberculosis. The newly generated recombinant strain mc2-CMX was tested in a murine model of infection. The recombinant vaccine induced specific IgG1 or IgG2a responses to CMX. CD4+ and CD8+ T cells from the lungs and spleen responded ex vivo to CMX, producing IFN-γ, IL17, TNF-α, and IL2. The vaccine thus induced a significant immune response in mice. Mice vaccinated with mc2-CMX and challenged with M. tuberculosis showed better protection than mice immunized with wild-type M. smegmatis or BCG. To increase the safety and immunogenicity of the CMX antigens, we used a recombinant strain of M. smegmatis, IKE (immune killing evasion), to express CMX. The recombinant vaccine IKE-CMX induced a better protective response than mc2-CMX. The data presented here suggest that the expression of CMX antigens improves the immune response and the protection induced in mice when M. smegmatis is used as vaccine against tuberculosis.  相似文献   

16.
Bacille Calmette–Guérin (BCG) immunization provides variable protection against tuberculosis. Prenatal antigen exposure may have lifelong effects on responses to related antigens and pathogens. We therefore hypothesized that maternal latent Mycobacterium tuberculosis infection (LTBI) influences infant responses to BCG immunization at birth. We measured antibody (n = 53) and cellular (n = 31) responses to M. tuberculosis purified protein derivative (PPD) in infants of mothers with and without LTBI, in cord blood and at one and six weeks after BCG. The concentrations of PPD-specific antibodies declined between birth (median [interquartile range (IQR)]) 5600 ng ml−1 [3300–11 050] in cord blood) and six weeks (0.00 ng ml−1 [0–288]). Frequencies of PPD-specific IFN-γ-expressing CD4+T cells increased at one week and declined between one and six weeks (p = 0.031). Frequencies of IL-2- and TNF-α-expressing PPD-specific CD4+T cells increased between one and six weeks (p = 0.019, p = 0.009, respectively). At one week, the frequency of PPD-specific CD4+T cells expressing any of the three cytokines, combined, was lower among infants of mothers with LTBI, in crude analyses (p = 0.002) and after adjusting for confounders (mean difference, 95% CI −0.041% (−0.082, −0.001)). In conclusion, maternal LTBI was associated with lower infant anti-mycobacterial T-cell responses immediately following BCG immunization. These findings are being explored further in a larger study.  相似文献   

17.
Host defense against the intracellular protozoan parasite Trypanosoma cruzi depends on Toll-like receptor (TLR)-dependent innate immune responses. Recent studies also suggest the presence of TLR-independent responses to several microorganisms, such as viruses, bacteria, and fungi. However, the TLR-independent responses to protozoa remain unclear. Here, we demonstrate a novel TLR-independent innate response pathway to T. cruzi. Myd88 −/− Trif −/− mice lacking TLR signaling showed normal T. cruzi-induced Th1 responses and maturation of dendritic cells (DCs), despite high sensitivity to the infection. IFN-γ was normally induced in T. cruzi-infected Myd88 −/− Trif −/− innate immune cells, and further was responsible for the TLR-independent Th1 responses and DC maturation after T. cruzi infection. T. cruzi infection induced elevation of the intracellular Ca2+ level. Furthermore, T. cruzi-induced IFN-γ expression was blocked by inhibition of Ca2+ signaling. NFATc1, which plays a pivotal role in Ca2+ signaling in lymphocytes, was activated in T. cruzi-infected Myd88−/−Trif−/− innate immune cells. T. cruzi-infected Nfatc1 −/− fetal liver DCs were impaired in IFN-γ production and DC maturation. These results demonstrate that NFATc1 mediates TLR-independent innate immune responses in T. cruzi infection.  相似文献   

18.
19.

Background

Tuberculosis (TB) is a disease caused by the chronic and continuous infection of the pathogen Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis is an intracellular bacterial pathogen and is eliminated mainly through CD4+ effector Th cells. M. tuberculosis induces regulatory T lymphocytes (Tregs) that mediate immune suppression by cell-to-cell contact or by secreting cytokines such as transforming growth factor-β (TGF-β). To understand the role of regulatory T-cells in the pathogenesis of TB, we have measured the in vivo frequency of regulatory T-cells and associated in vivo cytokine production in pulmonary tuberculosis patients.

Methodology/Principal Findings

In this study, we analyzed blood samples from 3 different populations (Group 1: patients with active TB, Group 2: patients recovered from TB and Group 3: healthy controls). We measured natural regulatory T-cell expression in peripheral blood using flow cytometry, and levels of blood serum IFN-γ and TGF-β1 using ELISA. The in vivo function of inductive regulatory T cells was mainly indicated by the expression of IFN-γ, TGF-β1, etc. Frequencyof natural regulatory T cells and inductive regulatory T cells in the peripheral blood samples from Group 1 patients were all significantly higher (P<0.05) than those from Groups 2 and 3.

Conclusion/Significance

Our results indicate that frequency of natural regulatory T cells and inductive regulatory T cells are significantly higher in the peripheral blood of patients with active pulmonary tuberculosis. These findings have potential application in improving TB diagnostic methods.  相似文献   

20.
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号