首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Eighteen out of 88 estrous synchronized Aradi goat does were randomly chosen to be bled during May–July (Out breeding season, n = 9) and during September–December (Within breeding season, n = 9). Estrous synchronization was applied by using a control internal drug release (CIDR) as a reproductive management regimen throughout the year. Nineteen days after CIDR insertion, a 500 IU eCG was injected (i.m.) and CIDR was removed. Does were subjected to fertile bucks 48-60 h after CIDR removal. Jugular blood samples were collected in non-heparinized Vacutainer tubes at 0 h just before CIDR insertion, every 3 days during CIDR insert, at day of CIDR removal, at incidence of estrus and mating, at day 1, 8 and 30 post mating. Data on pregnancy were recorded and serum levels of progesterone (P), sodium (Na), potassium (K), copper (Cu) and iron (Fe) were determined. Progesterone concentration was higher (p < 0.05) within (2.85 ± 0.15 ng/ml) than outside (2.37 ± 0.13 ng/ml) the breeding season. Pregnant does exhibited higher (p < 0.05) levels of progesterone (2.76 ± 0.17 ng/ml) than non-pregnant does (2.37 ± 0.10 ng/ml). No significant interaction was found between season and pregnancy status on progesterone concentration. A typical progesterone profile was found during treatment days, as levels of P increased during CIDR insertion and declined at CIDR removal and thereafter. Neither breeding season nor pregnancy status affected Na+ concentration. Contrariwise, mean levels of K+ was higher (p < 0.05) outside (148.34 ± 3.91 mg/L) than within (136.27 ± 3.91 mg/L) the breeding season. Pregnancy status did not influence K concentration. Sodium/potassium (Na+/K+) ratio was significantly (p < 0.01) higher within (30.29 ± 0.44) than outside (27.62 ± 0.44) the breeding season. On the contrary, pregnancy status did not affect this ratio. Iron concentrations neither affected by season nor pregnancy. Likewise, Cu concentrations were not affected by season, however Cu levels were higher (p < 0.05) in pregnant (147.75 ± 7.24 μg/L) than in non-pregnant (127.31 ± 5.03 μg/L) does.  相似文献   

2.
3.
4.
Estradiol (E2) action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001). These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity.  相似文献   

5.
The present study aimed to investigate the effects of a combination of progesterone with different doses of E-17β on following end points: (1) ovarian follicular dynamics and emergence of a new follicular wave, and (2) superovulatory response and embryo yield. In Experiment 1, 28 ewes were randomly divided into four groups (n = 7) to receive either 2.0 mg, 1.0 mg, 0.5 mg or none E-17β one day after insertion of a progesterone device. The different doses of estradiol similarly delayed the moment of follicular emergence (overall mean = 3.1 ± 1.0 days vs. control group = 0.86 ± 1.0 days; P < 0.01), but the emergence of the new wave showed greater synchronization with the 0.5 mg dosage of E-17β. In Experiment 2, sixty-two donor ewes received an internal progesterone release device (day -1) for 7 d and 1 d after the insertion of this device (day 0) were allocated randomly to receive 0.5 mg of E-17β or only the vehicle (control group). Superstimulation was initiated on day 3 with the administration of 133 mg of pFSH in eight decreasing doses. Contrary to expectations, the protocol with the administration of 0.5 mg E-17β did not improve the percentage of donors with > 2 CL, the number of CL and the production of embryos (P > 0.05). It was concluded that the combination of progesterone and 0.5 mg E-17β was more efficient in synchronizing the emergence of the new follicular wave, however this approach seems to be unnecessary in ewe’s superovulation programs.  相似文献   

6.
Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in the biliary secretory failure induced by E17G and its activation follows that of cPKC.  相似文献   

7.
Aromatase inhibitors (AIs) are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC). Messenger RNA (mRNA) levels of 5 estrogen-related genes–AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR–were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy–defined as the combined complete response, partial response, and stable disease rates for at least 6 months–was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36%) and identical sensitivity (96%) to the current clinical practice (ERα/PR-IHC). In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection.  相似文献   

8.
Owing to the avascular environment within ovarian follicles, granulosa cells (GCs) are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH)-mediated steroidogenesis is crucial for normal growth and maturation of ovarian follicles, but it remains unclear how FSH stimulates estradiol (E2) synthesis under hypoxic conditions. Here, we aimed to explore whether FSH affects the ATP production required for estrogen synthesis from the perspective of glucose metabolism. It was observed that the levels of both E2 and HIF-1α were markedly increased in a dose-dependent manner in mouse ovarian GCs after the injection of FSH in vivo, indicating that hypoxia/HIF-1α may be relevant to FSH-induced E2 synthesis. By treating hypoxic GCs with FSH in vitro, we further revealed that the activation of the AMP-activated protein kinase (AMPK)–GLUT1 pathway, which in turn stimulates ATP generation, may be essential for FSH-mediated E2 production during hypoxia. In contrast, inhibition of AMPK or GLUT1 with siRNAs/antagonist both repressed glycolysis, ATP production, and E2 synthesis despite FSH treatment. Moreover, blocking HIF-1α activity using siRNAs/PX-478 suppressed AMPK activation, GLUT1 expression, and E2 levels in FSH-treated GCs. Finally, the in vitro findings were verified in vivo, which showed markedly increased AMPK activity, GLUT1 expression, glycolytic flux, ATP levels, and E2 concentrations in ovarian GCs following FSH injection. Taken together, these findings uncovered a novel mechanism for FSH-regulating E2 synthesis in hypoxic GCs by activating glycolytic metabolism through the HIF-1α–AMPK–GLUT1 pathway.  相似文献   

9.
10.
In several species, mating reduces the estrous length and advances ovulation. The aim of this study was to determine if multiple matings reduces the estrous length and modifies the moment of ovulation, as well as the estradiol and LH patterns in ewes. The estrous cycle of Corriedale ewes was synchronized, and the onset of receptivity was monitored every 3 h with rams, avoiding mating. At the estrous onset, ewes were assigned to two experimental groups (n=10 each): 1) estrous was monitored every 3 h with a ram avoiding mating (group CON), and 2) a ram was allowed to mate and ejaculate once every 3 h (group MAT). The ovaries were scanned with transrectal ultrasonography and blood samples were collected for measuring 17β-estradiol and LH concentrations every 3 h until ovulation. Estrus was shorter in MAT than CON ewes (24.7 ± 1.5 h vs. 30.4 ± 1.5 h, respectively; P=0.02); the proportion of animals that ovulated before the end of estrus was greater in CON ewes: (9/10 vs. 3/10, P=0.009). The area under the LH curve (AUC) was greater in MAT than CON ewes (36.1 ± 3.5 ng.h-1.mL-1 vs 24.9 ± 3.5 ng.h-1.mL-1 P=0.03). However, MAT ewes had a lower 17β-estradiol AUC than CON ewes (41.0 ± 4.9 pg.h-1.mL-1 vs 59.4 ± 4.9 pg.h-1.mL-1 P=0.01). Mating reduced the estrous length, induced a greater secretion of LH but less total 17β-estradiol secreted and, additionally, ovulation occurred more frequently after the end of estrus in mated ewes.  相似文献   

11.
Estradiol and progesterone mediate their actions by binding to classical nuclear receptors, estrogen receptor α (ERα) and estrogen receptor β (ERβ) and progesterone receptor A and B (PR-A and PR-B) and the non-classical G protein-coupled estrogen receptor (GPER). Several animal knock-out models have shown the importance of the receptors for growth of the oocyte and ovulation. The aim of our study was to identify GPER in human granulosa cells (GC) for the first time. Moreover, the effect of different doses of gonadotropins on estrogen and progesterone receptors in the human ovary should be investigated as follicle stimulating hormone (FSH) and luteinizing hormone (LH) are also responsible for numerous mechanisms in the ovary like induction of the steroid biosynthesis. Human GC were cultured in vitro and stimulated with different doses of recombinant human FSH or LH. Receptor expression was analyzed by immunocytochemistry and quantitative real-time RT-PCR. GPER could be identified for the first time in human GC. It could be shown that high concentrations of LH increase GPER protein expression. Furthermore FSH and LH increased ERβ, PR-A and PR-B significantly on protein level. These findings were verified for high doses of FSH and LH on mRNA level. ERα was not affected with FSH or LH. We assume that gonadotropins induce GPER, ERβ and PR in luteinized granulosa cells.  相似文献   

12.
Chaihu-Shugan-San (CSS) is a traditional Chinese herbal formula that is widely used for treating perimenopausal symptoms in China; however, its mechanisms remain unknown. The present study was designed to investigate potential CSS mechanisms in rats with unpredicted chronic mild stress (UCMS) and normally aging rats (52 weeks of age). We performed the sucrose consumption test along with the forced swimming test to confirm depression-like behavior and the open field test (OFT) to confirm anxiety-like behavior in the animals. In addition, we used an enzyme-linked immunosorbent assay to measure serum and hippocampal estradiol (E2) levels and a quantitative real-time polymerase chain reaction to assess hippocampal mRNA levels of estrogen receptors (ERs) α and β as well as G protein-coupled receptor 30 (GPR30). We found that CSS administration resulted in a significant increase in the ratio of hippocampal ERα and ERβ mRNA (ERα/ERβ ratio) in UCMS rats (p<0.001). However, no significant changes were observed in E2 levels, ERα mRNA expression, and GPR30 mRNA expression. In contrast, changes in ERα/ERβ mRNA ratio were sensitively associated with changes in mood states in the animal models. These findings suggest that enhancement of ERα/ERβ ratio may play a role in the pharmacological mechanisms of CSS. Furthermore, this ratio can be employed as a potential index for evaluating mood states in animal models and can be considered as a therapeutic target for perimenopausal anxiety and depression in the future.  相似文献   

13.
An increase in the expression of estrogen receptors (ER) and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4) and ERα (Ka = 1.55±0.298×108 M-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg). Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20). Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative breast cancer tissues. We anticipate that the ERaptD4 aptamer targeting ERα may potentially be used for an efficient grading of ERα expression in cancer tissues.  相似文献   

14.

Background

Nonylphenol (NP) has been proven as an endocrine disrupter and had the ability to interfere with the endocrine system. Though the health effects of NP on pregnant women and their fetuses are sustained, these negative associations related to the mechanisms of regulation for estrogen during pregnancy need to be further clarified. The objective of this study is to explore the association between maternal NP and hormonal levels, such as estradiol, testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH), and progesterone.

Methods

A pregnant women cohort was established in North Taiwan between March and December 2010. Maternal urine and blood samples from the first, second, and third trimesters of gestation were collected. Urinary NP concentration was measured by high-performance liquid chromatography coupled with fluorescent detection. A mixed-effects model using a generalised estimating equation (GEE) was applied to assess the associations between maternal NP concentration and plasma hormones throughout the three trimesters.

Results

In total, 162 singleton pregnant women completed this study through delivery. The geometric mean of creatinine-adjusted urinary NP concentrations were 4.27, 4.21, and 4.10 µg/g cre. in the first, second, and third trimesters respectively. A natural log-transformation of urinary NP concentrations were significantly associated with LH in the GEE model (β = −0.23 mIU/ml, p<0.01).

Conclusion

This perspective cohort study demonstrates that negative association occurs between maternal NP exposure and plasma LH levels. The estrogen-mimic effect of NP might influence the negative feedback on LH during pregnancy.  相似文献   

15.
16.
The presence of a thin endometrium has an important role in allowing the best conditions for hysteroscopic surgery. Here, we explored the efficacy of a 14-day administration of nomegestrol acetate, a progestogen with high progestogen potency effects, in rapid endometrial preparation to operative hysteroscopy.A total of 86 fertile women selected for operative hysteroscopy received for 14 days either 5 mg day−1 of nomegestrol acetate (n = 43; group A) or 4 mg day−1 of folic acid (n = 43; group B), starting on day 1 of the subsequent menstrual cycle. Before treatments on days 12-14 of the menstrual cycle, all patients underwent endometrial thickness measurement; ultrasonography of the ovaries to measure the appearance of a dominant follicle; diagnostic hysteroscopy with endometrial biopsy; plasma estradiol (E2), progesterone (P), luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels measurements. On the day of surgery, patients repeated endometrial and ovarian ultrasonography and, E2, P, LH and FSH measurement.At enrolment, endometrial thickness, mean follicular diameter and E2, P, LH and FSH concentrations did not differ between groups. At the time of operative hysteroscopy (i.e., after 14 days’ treatment) group A, but not group B, showed significant (all P < 0.001) reduction of endometrial thickness, mean diameter of dominant follicle, E2, P and LH concentrations. Endometrial preparation was judged more effective in group A than B, since the endometrial mucosa in all of the women of group A appeared to be very thin, hypotrophic, regular and pale. In conclusion, administration of nomegestrol acetate was effective in reducing endometrial thickness, also acting on the hypothalamus-pituitary-ovarian axis, thus allowing highly favourable operative hysteroscopic conditions.  相似文献   

17.

Background

Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined.

Methodology/Principal Findings

Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs.

Conclusions/Significance

Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity.  相似文献   

18.
Postmenopausal osteoporosis is characterized by declining estrogen levels, and estrogen replacement therapy has been proven beneficial for preventing bone loss in affected women. While the physiological functions of estrogen in bone, primarily the inhibition of bone resorption, have been studied extensively, the effects of pharmacological estrogen administration are still poorly characterized. Since elevated levels of follicle-stimulating hormone (FSH) have been suggested to be involved in postmenopausal bone loss, we investigated whether the skeletal response to pharmacological estrogen administration is mediated in a FSH-dependent manner. Therefore, we treated wildtype and FSHβ-deficicent (Fshb−/−) mice with estrogen for 4 weeks and subsequently analyzed their skeletal phenotype. Here we observed that estrogen treatment resulted in a significant increase of trabecular and cortical bone mass in both, wildtype and Fshb−/− mice. Unexpectedly, this FSH-independent pharmacological effect of estrogen was not caused by influencing bone resorption, but primarily by increasing bone formation. To understand the cellular and molecular nature of this osteo-anabolic effect we next administered estrogen to mouse models carrying cell specific mutant alleles of the estrogen receptor alpha (ERα). Here we found that the response to pharmacological estrogen administration was not affected by ERα inactivation in osteoclasts, while it was blunted in mice lacking the ERα in osteoblasts or in mice carrying a mutant ERα incapable of DNA binding. Taken together, our findings reveal a previously unknown osteo-anabolic effect of pharmacological estrogen administration, which is independent of FSH and requires DNA-binding of ERα in osteoblasts.  相似文献   

19.
20.
Although perinatal exposure of female rats to estrogenic compounds produces irreversible changes in brain function, it is still unclear how the amount and timing of exposure to those substances affect learning function, or if exposure alters estrogen receptor α (ERα) expression in the hippocampus and cortex. In adult female rats, we investigated the effects of neonatal exposure to a model estrogenic compound, ethinyl estradiol (EE), on passive avoidance learning and ERα expression. Female Wistar-Imamichi rats were subcutaneously injected with oil, 0.02 mg/kg EE, 2 mg/kg EE, or 20 mg/kg 17β-estradiol within 24 h after birth. All females were tested for passive avoidance learning at the age of 6 weeks. Neonatal 0.02 mg/kg EE administration significantly disrupted passive avoidance compared with oil treatment in gonadally intact females. In a second experiment, another set of experimental females, treated as described above, was ovariectomized under pentobarbital anesthesia at 10 weeks of age. At 15–17 weeks of age, half of each group received a subcutaneous injection of 5 μg estradiol benzoate a day before the passive avoidance learning test. Passive avoidance learning behavior was impaired by the 0.02 mg/kg EE dose, but notably only in the estradiol benzoate-injected group. At 17–19 weeks of age, hippocampal and cortical samples were collected from rats with or without the 5 μg estradiol benzoate injection, and western blots used to determine ERα expression. A significant decrease in ERα expression was observed in the hippocampus of the estradiol-injected, neonatal EE-treated females. The results demonstrated that exposure to EE immediately after birth decreased learning ability in adult female rats, and that this may be at least partly mediated by the decreased expression of ERα in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号