首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene inactivation of the orphan G protein-coupled receptor LGR4, a paralogue of the epithelial-stem-cell marker LGR5, results in a 50% decrease in epithelial cell proliferation and an 80% reduction in terminal differentiation of Paneth cells in postnatal mouse intestinal crypts. When cultured ex vivo, LGR4-deficient crypts or progenitors, but not LGR5-deficient progenitors, die rapidly with marked downregulation of stem-cell markers and Wnt target genes, including Lgr5. Partial rescue of this phenotype is achieved by addition of LiCl to the culture medium, but not Wnt agonists. Our results identify LGR4 as a permissive factor in the Wnt pathway in the intestine and, as such, as a potential target for intestinal cancer therapy.  相似文献   

2.
Gut-associated lymphoid tissue is a major target and reservoir of human immunodeficiency virus (HIV)-infected T-cells. Our studies seek to recapitulate, in vitro, interactions between HIV-infected T-lymphocytes and intestinal epithelial cells in order to investigate the mechanisms underlying the disruption of normal epithelial cell and barrier function. Here, we describe a novel approach for creating co-cultures of healthy or HIV-infected T-lymphocytes (Jurkat) and human intestinal epithelial (HT-29) cells where both cell types are positioned on the same surface in a price spatial configuration (micropattern). This co-culture method simplified observation/monitoring of the two cell types and was particularly suited for laser microdissection-based retrieval of the desired cells for downstream gene expressions studies. DNA microarray analysis of epithelial cells retrieved from co-cultures with HIV-1-infected vs. uninfected Jurkat cells revealed that epithelial cells from HIV-infected co-cultures exhibited gene expression patterns consistent with disruption of epithelial barrier formation. Overall, the micropatterned co-culture system described here is envisioned as a valuable new tool for delineating how HIV and other infections contribute to dysfunction of mucosal epithelium.  相似文献   

3.
Nerve cell death is the key event in all neurodegenerative disorders, with apoptosis and necrosis being central to both acute and chronic degenerative processes. However, until now, it has not been possible to study these dynamically and in real time. In this study, we use spectrally distinct, well-recognised fluorescent cell death markers to enable the temporal resolution and quantification of the early and late phases of apoptosis and necrosis of single nerve cells in different disease models. The tracking of single-cell death profiles in the same living eye over hours, days, weeks and months is a significant advancement on currently available techniques. We identified a numerical preponderance of late-phase versus early-phase apoptotic cells in chronic models, reinforcing the commonalities between cellular mechanisms in different disease models. We showed that MK801 effectively inhibited both apoptosis and necrosis, but our findings support the use of our technique to investigate more specific anti-apoptotic and anti-necrotic strategies with well-defined targets, with potentially greater clinical application. The optical properties of the eye provide compelling opportunities for the quantitative monitoring of disease mechanisms and dynamics in experimental neurodegeneration. Our findings also help to directly observe retinal nerve cell death in patients as an adjunct to refining diagnosis, tracking disease status and assessing therapeutic intervention.  相似文献   

4.
Spermatogenesis in higher animals is a tightly regulated process, in which survival and death of sperm precursor cells depends on the presence of somatic cells in gonads. In the basal metazoan Hydra spermatogenesis takes place in anatomically simple testes and in the absence of accessory structures. Hydra sperm precursors are derived from interstitial stem cells. Here we show that large numbers of sperm precursors in testes of Hydra vulgaris undergo programmed cell death (apoptosis) and that ectodermal epithelial cells phagocytose the apoptotic sperm precursors. This is surprising since so far no evidence has been reported that epithelial cells are directly involved in germ cell differentiation in Hydra. We propose that, similar to Sertoli cells in mammals, in Hydra epithelial cells support and perhaps even control spermatogenesis.  相似文献   

5.
Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or with medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment at 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with cither fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.  相似文献   

6.
The death receptor Fas transduces apoptotic death signaling upon stimulation with the Fas ligand. We previously reported that Fas contributes to vaginal cell death observed during the estrus cycle and after estrogen deprivation, using the functional Fas-lacking lpr and lprcg mutant mouse. In the present study, we investigated whether the Fas ligand also plays a dominant role in vaginal cell death using the functional Fas ligand-lacking gld mutant mouse. Our results demonstrated that vaginal cells of gld mice do not show any abnormalities, suggesting the possible presence of another ligand for Fas. Through our investigation, we demonstrated TNF-alpha as a ligand for vaginal Fas. Here, we propose that TNF-alpha acts for the ligand for Fas in vaginal cells, suggesting a new cell death induction system.  相似文献   

7.
8.
9.
A novel three-dimensional culture system for the ex vivo expansion of human umbilical cord blood (CB) hematopietic progenitor cells (HPCs) was developed by growing CB mononuclear cells on highly porous CultiSpher G microspheres coated with human bone marrow stromal cells in stirred flasks in the presence of supplemented cytokines. After 12 days, the number of total viable cells, colony-forming units in culture (CFU-C) and CD34+ cells present in the cultures reflected average increases of 7.7, 23.3 and 9.6-fold, respectively, and marked hematopoietic islands were formed on the surface of CultiSpher G.  相似文献   

10.
The small intestine consists of two histological compartments composed of the crypts and the villi. The function of the adult small intestinal epithelium is mediated by four different types of mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling pathways have been suggested to be involved in the regulation and maintenance of the stem cell microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the expression of a panel of intestinal stem cell markers in HIEC cells under normal culture parameters as well as under conditions that mimic the stem cell microenvironment. The results showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a±SB-216763, a glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression. These findings demonstrate that even fully established cultures of intestinal cells can be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the regulation of human intestinal stem cell self-renewal and differentiation.  相似文献   

11.

Aims

Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008).

Main methods

Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24 h and weighed every 24 h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay).

Key findings

We detected significant differences (p < 0.0001) for all DNA damage characteristics (DNA “comet” tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length – 119 vs. 153; tail moment – 101 vs. 136; olive moment – 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r = 0.52, p < 0.05) and increased rate of errors (r = 0.51, p < 0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r = − 0.75, p < 0.02).

Significance

Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy.  相似文献   

12.
In vitro studies on the pathogenesis in swine have been hampered by the lack of relevant porcine cell lines. Since many bacterial infections are swine-specific, studies on pathogenic mechanisms require appropriate cell lines of porcine origin. We have characterized the permanent porcine intestinal epithelial cell line, IPEC-J2, using a variety of methods in order to assess the usefulness of this cell line as an in vitro infection model. Electron microscopic analyses and histochemical staining revealed the cells to be enterocyte-like with microvilli, tight junctions and glycocalyx-bound mucin. The functional integrity of monolayers was determined by transepithelial electrical resistance (TEER) measurements. Both commensal bacteria and important bacterial pathogens were chosen for study based on their principally different infection mechanisms: obligate extracellular Escherichia coli, facultative intracellular Salmonella and obligate intracellular Chlamydia. We determined the colonization and proliferation of the bacteria on and within the host cells and monitored the host cell response. We verified the expression of mRNAs encoding the cytokines IL-1α, −6, −7, −8, −18, TNF-α and GM-CSF, but not TGF-β or MCP-1. IL-8 protein expression was enhanced by Salmonella invasion. We conclude that the IPEC-J2 cell line provides a relevant in vitro model system for porcine intestinal pathogen–host cell interactions.  相似文献   

13.
The chakragati (ckr) mouse is a serendipitously discovered insertional transgenic mutant that exhibits circling and hyperactivity. Studies of social behavior, sensorimotor gating and ventricular anatomy suggest that the ckr mouse models aspects of schizophrenia. The underlying genetic and neurodevelopmental mechanisms remain to be elucidated but appear to result in a hemispheric asymmetry in striatal D(2)-like dopamine receptors. The circling is inhibited by administration of antipsychotic drugs and so lends itself to in vivo prospective screening for novel molecules with antipsychotic-like activity. Using the ckr mouse we have applied an in vivo first approach to screening for antipsychotic drug candidates. This offers the advantage of early indication of central nervous system bioavailability and potential toxicological concerns. Additionally, in vivo first screening in the ckr mouse is not biased by any particular neurotransmitter hypothesis of the disease, and so has the potential to identify compounds modifying the behavioral output by novel mechanisms of interaction with the underlying brain circuitry. Thus, in contrast to the classical strategy of hypothesis-driven in vitro screening for drugs fitting a "receptor model" of the disease, the ckr mouse screen has greater potential to identify lead molecules for a new generation antipsychotics with novel mechanisms of action.  相似文献   

14.
Mechanisms controlling epithelial proliferation and differentiation in the prostate have been primarily investigated in mouse models. The regulation of proliferation and differentiation is poorly understood in human prostate epithelial cells. In vivo, the glandular prostate epithelium consists of a p63-positive proliferating basal cell layer and a post-mitotic p27-positive secretory cell layer. We have established an organized stratified culture system of human primary prostate epithelial cells to gain insight into mechanisms regulating proliferation and differentiation. In this system, expression of p63 is observed in the bottom layer. In addition, BrdU incorporation persists even though cells are confluent. In contrast, in the upper layer, p63 expression is greatly diminished, p27 is expressed, and the cells are growth arrested. Overexpression of cyclin D1 or knockdown of p27 does not increase proliferation. After inactivation of the nuclear phosphoprotein Rb, the cell layers remain organized and cell proliferation increases only in the bottom layer. Furthermore, the expression of p63 remains confined to the bottom layer after Rb inactivation. Altogether, this in vitro model recapitulates certain aspects of in vivo growth regulation and differentiation and suggests that the loss of Rb family proteins in human cells trigger hyperplasia but is not sufficient for transformation.This work was supported by the Departments of Pathology and Urology at Weill Medial College, by grants DAMD-17-02-1-0159, MEDC-GR-355, and P30 CA015704-30, and by grant RO1CA84069 to B.E.C.  相似文献   

15.
Isolated epithelial cells from porcine urinary bladders were maintained in dividing long-term monolayer cultures, and were used as a model system for the urinary bladder in toxicological studies in vitro. To examine the state of differentiation during the culture period, the culture system was characterised morphologically by light and transmission electron microscopy and by immune fluorescence labelling with antibodies against cytokeratins 7,13 and pan. The cultured cells were identified as urothelial epithelium by their polarised structure, and by their expression of several uroepithelial specific morphological features, such as fusiform vesicles, tight junctions and an asymmetric apical cell membrane. Additionally, the cells were labelled with anti-cytokeratin 7,13 and pan antibodies, and negatively with anti-vimentin antibodies. The maintenance of suitable culture conditions was shown by the stable enzyme activities of (gamma-glutamyltranspeptidase, alkaline phosphatase and acid phosphatase over a culture period of 4 weeks. A good viability of the cultured cells under the chosen culture conditions was shown by the presence of low amounts of lactate dehydrogenase (< of = 5%) in the culture medium. The activities of the chosen marker enzymes for cell differentiation (gamma-glutamyltranspeptidase), lysosomes (acid phosphatase) and luminal membranes (alkaline phosphatase) were relatively stable over the observed culture period. Enzyme activities involved in metabolism of xenobiotics were determined, to define the ability for metabolism in cultured cells compared with bladder tissue in situ. Several constitutive phase I and II enzyme activities were found to be stable during the culture period, indicating that the cultured cells should be able to metabolise xenobiotics in a comparable manner to the urothelium in vivo. The cytotoxic effects of xenobiotics were investigated and IC50 values were determined by means of lactate dehydrogenase leakage and inhibition of neutral red uptake. The induction of sister chromatid exchanges was used as a parameter for the genotoxic effects of several xenobiotics. This cell culture system was found to be a very good screening system for the testing of substances that affect the bladder, especially aromatic amines.  相似文献   

16.
Ren HJ  Cui J  Wang ZQ  Liu RD 《PloS one》2011,6(10):e27010
It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche.  相似文献   

17.
A long‐term cell culture system was used to study maturation, aging, and death of cortical neurons. Mouse cortical neurons were maintained in culture in serum‐free medium (Neurobasal supplemented with B27) for 60 days in vitro (DIV). The levels of several proteins were evaluated by immunoblotting to demonstrate that these neurons matured by developing dendrites and synapses and remained continuously healthy for 60 DIV. During their maturation, cortical neurons showed increased or stable protein expression of glycolytic enzyme, synaptophysin, synapsin IIa, α and β synucleins, and glutamate receptors. Synaptogenesis was prominent during the first 15 days and then synaptic markers remained stable through DIV60. Very early during dendritic development at DIV3, β‐synuclein (but not α‐synuclein) was localized at the base of dendritic growth cones identified by MAP2 and α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole (AMPA) receptor GluR1. In mature neurons, α and β synucleins colocalized in presynaptic axon terminals. Expression of N‐methyl‐D ‐aspartate (NMDA) and AMPA receptors preceded the formation of synapses. Glutamate receptors continued to be expressed strongly through DIV60. Cortical neurons aging in vitro displayed a complex profile of protein damage as identified by protein nitration. During cortical neuron aging, some proteins showed increased nitration, while other proteins showed decreased nitration. After exposure to DNA damaging agent, young (DIV5) and old (DIV60) cortical neurons activated apoptosis mechanisms, including caspase‐3 cleavage and poly(ADP)‐ribose polymerase inactivation. We show that cultured mouse cortical neurons can be maintained for long term. Cortical neurons display compartmental changes in the localization of synucleins during maturation in vitro. These neurons sustain protein nitration during aging and exhibit age‐related variations in the biochemistry of neuronal apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 9–23, 2002  相似文献   

18.
Summary A stationary tissue culture system for reaggregation cultures of rat brain cells is described. Aggregates were formed by placing cells at high concentrations in liquid overlay cultures on a nonadherent nutrient agar surface. No physical stress in the form of rotation or shaking was applied to the aggregating cell population. Transmission electron microscopy and immunohistochemistry showed that the cells developed from homogeneously dispersed, immature cells in Day 4 aggregates, to mature astrocytes, oligodendrocytes, and neurons in Day 20 aggregates. Twenty days and older aggregates had a tightly packed neuropil which was most prominent in a cell-sparse outer layer of the aggregates. When the aggregates were allowed to adhere to a substrate, both glial fibrillary acidic protein (GFAP) positive and negative cells were observed migrating out from the aggregates. Cells giving a positive reaction for neuron specific enolase (NSE) were also present. This reaggregation procedure, with transfer of selected brain cell aggregates into agar-coated multiwells is an alternative three-dimensional culture system which can be potentially useful in the study of morphogenesis and cell interactions in the nervous system. This project was supported by the Norwegian Cancer Society.  相似文献   

19.
Various DNA double-strand break repair mechanisms, in which DNA-dependent protein kinase (DNA-PK) has a major role, are involved both in the development and treatment of glioblastoma. The aim of the present study was to investigate how glioblastoma cells responded to hydrogen peroxide and staurosporine (STS) and how such a response is related to DNA-PK. Two human glioblastoma cell lines, M059J cells that lack DNA-PK activity, and M059K cells that express a normal level of DNA-PK, were exposed to hydrogen peroxide or STS. The response of the cells to hydrogen peroxide or STS was recorded by measuring cell death, which was detected by three different methods—MTT, annexin-V and propidium iodide staining, and JC-1 mitochondrial probe. The result showed that both hydrogen peroxide and STS were able to induce cell death of the glioblastoma cells and that the former was mainly associated with necrosis and the latter with apoptosis. Glioblastoma cells lacking DNA-PK were less sensitive to STS treatment than those containing DNA-PK. However, DNA-PK had no significant influence on hydrogen peroxide treatment. We further found that catalase, an antioxidant enzyme, could prevent cell death induced by hydrogen peroxide but not by STS, suggesting that the pathways leading to cell death by hydrogen peroxide and STS are different. We conclude that hydrogen peroxide and STS have differential effects on cell death of glioblastoma cells lacking DNA-dependent protein kinase. Such differential roles in the induction of glioblastoma cell death can be of significant value in selecting and/or optimizing the treatment for this malignant brain tumor.  相似文献   

20.
The chloragogenous tissue and the intestinal epithelium of adult earthworms, Lumbricus terrestris, sampled from sites with and without volcanic activity in the Azores were submitted to hematoxylin/eosin staining, autometallography and TUNEL-test in order to quantify the radial thickness of both tissues, their relative abundance of metals and apoptosis levels. Metals were visualized, through light microscopy, as black silver deposits (BSD) mostly in the chloragogenous tissue. The lowest radial thickness values of both tissues were found in the active volcanic sites, as well as the highest BSD and apoptosis levels. The BSD extent in the chloragogenous tissue, semi-quantified by stereology, exhibited a positive correlation with the apoptosis levels and a negative one with the radial thickness of both tissues. Thus, the variation of the radial thickness of both tissues, but especially of the chloragogenous tissue, which could reflect different cellular turnover rates caused by exposure to metals, is suggested as a biomarker of effect for metal exposure in terrestrial worms inhabiting volcanic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号