共查询到20条相似文献,搜索用时 15 毫秒
1.
†Richard Kvetanský Bistra Nankova Bhargava Hiremagalur †Emil Viskupic †Ilja Vietor †Milan Rusnak Anne McMahon Irwin J. Kopin Esther L. Sabban 《Journal of neurochemistry》1996,66(1):138-146
Abstract: Immobilization (IMO) stress elevates plasma catecholamines and increases tyrosine hydroxylase (TH) gene expression in rat adrenals. This study examined the mechanism(s) of IMO-induced changes in adrenal TH mRNA levels. Innervation of the adrenal medulla is predominantly cholinergic and splanchnicotomy as well as nicotinic receptor antagonists prevent the cold-induced rise in TH mRNA levels. In this study, the IMO-induced rise in plasma catecholamines, but not TH mRNA levels, was reduced by the antagonist chlorisondamine. Muscarinic antagonist atropine also did not prevent the IMO stress-elicited rise in TH mRNA. Furthermore, denervation of the adrenals by unilateral splanchnicotomy did not block the IMO-induced rise in TH mRNA but completely prevented the induction of neuropeptide Y mRNA. These results suggest that (1) the large increase in adrenal TH gene expression elicited by a single IMO stress is not regulated via cholinergic receptors or splanchnic innervation, and (2) there is a dissociation between regulatory mechanisms of catecholamine secretion and elevation of TH gene expression in the adrenal medulla of rats during IMO stress. 相似文献
2.
Tissue plasminogen activator (tPA) has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg) into plasmin. In this study, using plasminogen knockout (Plg-/-) mice and their Plg-native littermates (Plg+/+), we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group) were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo). A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticospinal tract (CST). Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p<0.01). BDA-positive axonal density of the CST originating from the contralesional cortex in the denervated side of the cervical gray matter was significantly reduced in Plg-/- mice compared with Plg+/+ mice (p<0.05). The behavioral outcome was highly correlated with the midline-crossing CST axonal density (R2>0.82, p<0.01). Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord. 相似文献
3.
Semaphorin4D (Sema4D) belongs to Semaphorins family and is secreted and membrane-bound protein. Its function on angiogenesis and axon regeneration makes it an ideal therapeutic target for spinal cord injury (SCI). Here we examined Sema4D expression profile by real-time PCR and western blot and found Sema4D was upregulated after SCI. In vitro study showed Sema4D was not only expressed in oligodendrocytes but also in endothelial cells (ECs). Hypoxia can mimic Sema4D upregulation in both cell lines. Moreover, overexpression of Sema4D through lentivirus in ECs promoted tube formation. However, Sema4D overexpression in oligodendrocytes precursor cells (OPCs) inhibited neuron myelination in neuron-oligodendrocyte co-culture system. Therefore, Sema4D knockdown in OPCs was applied in SCI rats. The results indicated that Sema4D knockdown significantly promoted functional recovery with blood–brain barrier score. Taken together, our data suggest that specific Sema4D knockdown in oligodendrocytes without disturbing its angiogenesis effect can be a beneficial strategy for SCI treatment. 相似文献
4.
Shoko Morita Kouko Tatsumi Manabu Makinodan Hiroaki Okuda Toshifumi Kishimoto Akio Wanaka 《Neurochemical research》2014,39(1):59-67
Accumulating evidence indicates that the medial prefrontal cortex (mPFC) is a site of myelin and oligodendrocyte abnormalities that contribute to psychotic symptoms of schizophrenia. The development of therapeutic approaches to enhance remyelination, a regenerative process in which new myelin sheaths are formed on demyelinated axons, may be an attractive remedial strategy. Geissoschizine methyl ether (GM) in the Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan (Yi-gan san), is one of the active components responsible for the psychotropic effects of yokukansan, though little is known about the mechanisms underlying the effects of either that medicine or GM itself. In the present study, we employed a cuprizone (CPZ)-induced demyelination model and examined the cellular changes in response to GM administration during the remyelination phase in the mPFC of adult mice. Using the mitotic marker 5-bromo-2′-deoxyuridine (BrdU), we demonstrated that CPZ treatment significantly increased the number of BrdU-positive NG2 cells, as well as microglia and mature oligodendrocytes in the mPFC. Newly formed oligodendrocytes were increased by GM administration after CPZ exposure. In addition, GM attenuated a decrease in myelin basic protein immunoreactivity caused by CPZ administration. Taken together, our findings suggest that GM administration ameliorated the myelin deficit by mature oligodendrocyte formation and remyelination in the mPFC of CPZ-fed mice. The present findings provide experimental evidence supporting the role for GM and its possible use as a remedy for schizophrenia symptoms by promoting the differentiation of progenitor cells to and myelination by oligodendrocytes. 相似文献
5.
《Matrix biology》2015
Transglutaminase activity has been widely implicated in bone deposition. A predominant role has been proposed for factor (F)XIII-A and a subsidiary role suggested for the homologous protein, transglutaminase 2. Full-length FXIII-A is an 83 kDa protransglutaminase that is present both in plasma and also in haematopoietic and connective tissue lineages. Several studies have reported expression in murine cells, including osteocytes, of a 37 kDa protein that reacts with the monoclonal anti-FXIII-A antibody AC-1A1. This protein was presumed to be a catalytically active fragment of FXIII-A-83 and to play a major role in bone deposition. We detected a 37 kDa AC-1A1 reactive protein in FXIII-A mRNA negative cell lines and in tissues from FXIII-A−/− mice. By mass spectrometric sequencing of AC-1A1 immunoprecipitates, we identified this protein as transaldolase-1, and confirmed that recombinant transaldolase-1 is recognised by AC-1A1. We have also shown that bone deposition is normal in FXIII-A−/−.TG2−/− double knockout mice, casting doubt on the role of transglutaminases in bone mineralisation. Various studies have used antibody AC-1A1 for immunohistochemistry or immunofluorescence. We observe strong FXIII-A dependent staining in paraffin embedded mouse heart sections, with relatively low background in non-expressing mouse cells. In contrast, FXIII-A independent staining predominates in cultured human cells using a standard immunofluorescence procedure. Immunofluorescence is present in membrane compartments that are expected to lack transaldolase, indicating that other off-target antigens are recognised by AC-1A1. This has significant implications for studies that have used this approach to define the subcellular trafficking of FXIII-A in osteocytes. 相似文献
6.
Yuetong Ding Yibo Qu Jia Feng Meizhi Wang Qi Han Kwok-Fai So Wutian Wu Libing Zhou 《PloS one》2014,9(7)
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5–C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI. 相似文献
7.
Emma L. Davies Yasser H. A. Abdel-Wahab Peter R. Flatt Clifford J. Bailey 《Experimental diabetes research》2001,2(1):29-36
Electrofusion-derived BRIN-BD11 cells are glucosesensitive
insulin-secreting cells which provide an
archetypal bioengineered surrogate β-cell for
insulin replacement therapy in diabetes mellitus,
5x106 BRIN-BD11 cells were implanted intraperitoneally
into severely hyperglycaemic (>24mmol/l)
streptozotocin-induced insulin-treated diabetic
athymic nude (nu/nu) mice. The implants reduced
hyperglycaemia such that insulin injections were
discontinued by 5–16 days (<17mmol/l) and normoglycaemia
(<9mmol/l) was achieved by 7–20
days. Implanted cells were removed after 28 days
and re-established in culture. After re-culture for 20
days, glucose-stimulated (16.7mmol/l) insulin
release was enhanced by 121% (p<0.001) compared
to non-implanted cells. Insulin responses to
glucagon-like peptide-1 (10−9mol/l), cholecystokinin-8 (10−8 mol/l) and L-alanine (10 mmol/l) were
increased by 32%, 31% and 68% respectively
(p<0.05–0.01). Insulin content of the cells was 148%
greater at 20 days after re-culture than before
implantation (p<0.001), but basal insulin release (at
5.6 mmol/l glucose) was not changed. After re-culture
for 40 days, insulin content declined to 68% of
the content before implantation (p<0.01), although
basal insulin release was unchanged. However, the
insulin secretory responses to glucose, glucagonlike
peptide-1, cholecystokinin-8 and L-alanine
were decreased after 40 days of re-culture to 65%,
72%, 73% and 42% respectively of the values before
implantation (p<0.05–0.01). The functional
enhancement of electrofusion-derived surrogate β-cells that were re-cultured for 20 days after implantation
and restoration of normoglycaemia indicates
that the in vivo environment could greatly assist β-cell engineering approaches to therapy for diabetes. 相似文献
8.
罗志新赵刚 《现代生物医学进展》2012,12(15):2994-2997
小鼠肝部分切除模型是在经典的大鼠模型基础上发展起来的。随着显微外科技术的发展和小鼠腹部手术围手术期管理的完善,快速、可靠、重复性高的小鼠模型得以建立。因为成本较低,且存在大量为研究肝切除后肝再生的转基因小鼠,小鼠已经成为研究肝再生的重要动物模型。肝再生的调控相当复杂,且不是由单一因素控制的,因此需要多种类的转基因小鼠进行肝切除后肝再生研究来明确各因子在肝再生过程中的确切作用与机制。通过小鼠肝切除后肝再生的研究,目前已证实的参与调控肝再生的细胞因子和生长因子有:肝再生增强因子(ALR)、肿瘤坏死因子α(TNFα)、白介素6(IL-6)、白介素1(IL-1)、肝细胞生长因子(HGF)、去甲肾上腺素(NE)、卵泡抑素(FS)、转化生长因子α(TGF-α)、转化生长因子β-1(TGF-β-1)等。 相似文献
9.
Nikki A. McLean Bogdan F. Popescu Tessa Gordon Douglas W. Zochodne Valerie M. K. Verge 《PloS one》2014,9(10)
Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies. 相似文献
10.
11.
Toxic NMDA-Receptor Activation Occurs During Recovery in a Tissue Culture Model of Ischemia 总被引:1,自引:0,他引:1
James J. Vornov 《Journal of neurochemistry》1995,65(4):1681-1691
Abstract: In some animal models of reversible ischemia, there is a therapeutic window during early recovery when glutamate receptor antagonists can rescue neurons from injury. We have previously reported that organotypic cultures of the hippocampus can be protected by NMDA-receptor antagonists during recovery from a brief period of simulated ischemia. To model ischemia, we have used potassium cyanide to inhibit oxidative metabolism and 2-deoxyglucose to inhibit glycolysis. To study the time course and mechanisms of delayed NMDA-receptor toxicity in more detail, we have extended these studies to dissociated cortical cultures. Injury was assessed by release of lactate dehydrogenase into the culture medium. Metabolic inhibition for 15 min caused dose-dependent injury. Morphologic signs of neuronal toxicity were delayed until the recovery period. MK-801 reduced injury significantly when present throughout the experiment. Surprisingly, MK-801 provided the same protection when administration was delayed until after the end of the metabolic inhibition, blocking NMDA receptors only during recovery. To examine NMDA toxicity during metabolic inhibition, the competitive NMDA-receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid was added during exposure. The protective effect of NMDA-receptor blockade was completely lost if the antagonist was removed during 1 min of continuing selective inhibition of oxidative metabolism. The toxic potency and effectiveness of glutamate were enhanced during metabolic inhibition, showing that receptors were not inactivated by simulated ischemia. These results are consistent with the specific hypothesis that return of oxidative metabolism triggers a critical period of toxic NMDA-receptor activation. 相似文献
12.
13.
Transplants of Human Mesenchymal Stem Cells Improve Functional Recovery After Spinal Cord Injury in the Rat 总被引:4,自引:0,他引:4
Cízková D Rosocha J Vanický I Jergová S Cízek M 《Cellular and molecular neurobiology》2006,26(7-8):1165-1178
Human mesenchymal stem cells (hMSCs) derived from adult bone marrow represent a potentially useful source of cells for cell replacement therapy after nervous tissue damage. They can be expanded in culture and reintroduced into patients as autografts or allografts with unique immunologic properties. The aim of the present study was to investigate (i) survival, migration, differentiation properties of hMSCs transplanted into non-immunosuppressed rats after spinal cord injury (SCI) and (ii) impact of hMSC transplantation on functional recovery. Seven days after SCI, rats received i.v. injection of hMSCs (2×106 in 0.5 mL DMEM) isolated from adult healthy donors. Functional recovery was assessed by Basso–Beattie–Bresnahan (BBB) score weekly for 28 days. Our results showed gradual improvement of locomotor function in transplanted rats with statistically significant differences at 21 and 28 days. Immunocytochemical analysis using human nuclei (NUMA) and BrdU antibodies confirmed survival and migration of hMSCs into the injury site. Transplanted cells were found to infiltrate mainly into the ventrolateral white matter tracts, spreading also to adjacent segments located rostro-caudaly to the injury epicenter. In double-stained preparations, hMSCs were found to differentiate into oligodendrocytes (APC), but not into cells expressing neuronal markers (NeuN). Accumulation of GAP-43 regrowing axons within damaged white matter tracts after transplantation was observed. Our findings indicate that hMSCs may facilitate recovery from spinal cord injury by remyelinating spared white matter tracts and/or by enhancing axonal growth. In addition, low immunogenicity of hMSCs was confirmed by survival of donor cells without immunosuppressive treatment. 相似文献
14.
Helena Slaets Sofie Nelissen Kris Janssens Pia M. Vidal Evi Lemmens Piet Stinissen Sven Hendrix Niels Hellings 《Molecular neurobiology》2014,50(3):1142-1151
The family of interleukin (IL)-6 like cytokines plays an important role in the neuroinflammatory response to injury by regulating both neural as well as immune responses. Here, we show that expression of the IL-6 family member oncostatin M (OSM) and its receptor is upregulated after spinal cord injury (SCI). To reveal the relevance of increased OSM signaling in the pathophysiology of SCI, OSM was applied locally after spinal cord hemisection in mice. OSM treatment significantly improved locomotor recovery after mild and severe SCI. Improved recovery in OSM-treated mice was associated with a reduced lesion size. OSM significantly diminished astrogliosis and immune cell infiltration. Thus, OSM limits secondary damage after CNS trauma. In vitro viability assays demonstrated that OSM protects primary neurons in culture from cell death, suggesting that the underlying mechanism involves direct neuroprotective effects of OSM. Furthermore, OSM dose-dependently promoted neurite outgrowth in cultured neurons, indicating that the cytokine plays an additional role in CNS repair. Indeed, our in vivo experiments demonstrate that OSM treatment increases plasticity of serotonergic fibers after SCI. Together, our data show that OSM is produced at the lesion site, where it protects the CNS from further damage and promotes recovery. 相似文献
15.
Junxiong Ma Jun Liu Hailong Yu Yu Chen Qi Wang Liangbi Xiang 《Neurochemical research》2016,41(5):1130-1137
Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus. 相似文献
16.
Linjun Tang Xiaocheng Lu Ronglan Zhu Tengda Qian Yi Tao Kai Li Jinyu Zheng Penglai Zhao Shuai Li Xi Wang Lixin Li 《Cellular and molecular neurobiology》2016,36(5):657-667
Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. This study aimed to investigate whether the use of adipose-derived stem cells (ADSCs) over-expressing the Ngn2 transgene (Ngn2–ADSCs) could display the characteristics of neurogenic cells and improve functional recovery in an experimental rat model of SCI. ADSCs from rats were cultured and purified in vitro, followed by genetically modified with the Ngn2 gene. Forty-eight adult female Sprague–Dawley rats were randomly assigned to three groups: the control, ADSCs, and Ngn2–ADSCs groups. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan locomotor rating scale for 8 weeks. Moreover, hematoxylineosin staining and immunohistochemistry were also performed. After neural induction, positive expression rate of NeuN in Ngn2–ADSCs group was upon 90 %. Following transplantation, a great number of ADSCs was found around the center of the injury spinal cord at 1 and 4 weeks, which improved retention of tissue at the lesion site. Ngn2–ADSCs differentiated into neurons, indicated by the expression of neuronal markers, NeuN and Tuj1. Additionally, transplantation of Ngn2–ADSCs upregulated the trophic factors (brain-derived neurotrophic factor and vascular endothelial growth factor), and inhibited the glial scar formation, which was indicated by immunohistochemistry with glial fibrillary acidic protein. Finally, Ngn2–ADSCs-treated animals showed the highest functional recovery among the three groups. These findings suggest that transplantation of Ngn2-overexpressed ADSCs promote the functional recovery from SCI, and improve the local microenvironment of injured cord in a more efficient way than that with ADSCs alone. 相似文献
17.
Karie A. Heinecke Adrienne Luoma Alessandra d’Azzo Daniel A. Kirschner Thomas N. Seyfried 《ASN neuro》2015,7(1)
GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve. 相似文献
18.
19.
The human natural killer cell antigen-1 (HNK-1) is functionally important in development, synaptic activity, and regeneration after injury in the nervous system of several mammalian species. It contains a sulfated glucuronic acid which is carried by neural adhesion molecules and expressed in nonmammalian species, including zebrafish, which, as opposed to mammals, spontaneously regenerate after injury in the adult. To evaluate HNK-1’s role in recovery of function after spinal cord injury (SCI) of adult zebrafish, we assessed the effects of the two HNK-1 synthesizing enzymes, glucuronyl transferase and HNK-1 sulfotransferase. Expression of these two enzymes was increased at the messenger RNA (mRNA) level 11 days after injury in the brainstem nuclei that are capable of regrowth of severed axons, namely, the nucleus of medial longitudinal fascicle and intermediate reticular formation, but not at earlier time points after SCI. mRNA levels of glucuronyl transferase and sulfotransferase were increased in neurons, not only of these nuclei but also in the spinal cord caudal to the injury site at 11 days. Mauthner neurons which are not capable of regeneration did not show increased levels of enzyme mRNAs after injury. Reducing protein levels of the enzymes by application of anti-sense morpholinos resulted in reduction of locomotor recovery for glucuronyl transferase, but not for HNK-1 sulfotransferase. The combined results indicate that HNK-1 is upregulated in expression only in those neurons that are intrinsically capable of regeneration and contributes to regeneration after spinal cord injury in adult zebrafish in the absence of its sulfate moiety. 相似文献