首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various heterocyclic sulfur compounds such as naphtho[2,1-b]thiophene (NTH) and benzo[b]thiophene (BTH) derivatives can be detected in diesel oil, in addition to dibenzothiophene (DBT) derivatives. Mycobacterium phlei WU-0103 was newly isolated as a bacterial strain capable of growing in a medium with NTH as the sulfur source at 50°C. M. phlei WU-0103 could degrade various heterocyclic sulfur compounds, not only NTH and its derivatives but also DBT, BTH, and their derivatives at 45°C. When M. phlei WU-0103 was cultivated with the heterocyclic sulfur compounds such as NTH, NTH 3,3-dioxide, DBT, BTH, and 4,6-dialkylDBTs as sulfur sources, monohydroxy compounds and sulfone compounds corresponding to starting heterocyclic sulfur compounds were detected by gas chromatography–mass spectrometry analysis, suggesting the sulfur-specific desulfurization pathways for heterocyclic sulfur compounds. Moreover, total sulfur content in 12-fold-diluted crude straight-run light gas oil fraction was reduced from 1000 to 475 ppm S, with 52% reduction, by the biodesulfurization treatment at 45°C with growing cells of M. phlei WU-0103. Gas chromatography analysis with a flame photometric detector revealed that most of the resolvable peaks, such as those corresponding to alkylated derivatives of NTH, DBT, and BTH, disappeared after the biodesulfurization treatment. These results indicated that M. phlei WU-0103 may have a good potential as a biocatalyst for practical biodesulfurization of diesel oil.  相似文献   

2.
The immobilization of Pseudomonas delafieldii R-8 in calcium alginate beads has been studied in order to improve biodesulfurization activity in oil/water (O/W) biphasic systems. A gas jet extrusion technique was performed to produce immobilized beads. The specific desulfurization rate of 1.5 mm diameter beads was 1.4-fold higher than that of 4.0 mm. Some nonionic surfactants can significantly increase the activity of immobilized cells. The desulfurization rate with the addition of 0.5% Span 80 increased 1.8-fold compared with that of the untreated beads. The rate of biodesulfurization was markedly enhanced by decreasing the size of alginate beads and adding the surfactant Span 80, most likely resulting from the increasing mass transfer of substrate to gel matrix.  相似文献   

3.
Biodesulfurization of refractory organic sulfur compounds in fossil fuels   总被引:3,自引:0,他引:3  
The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.  相似文献   

4.
A dibenzothiophene (DBT)-desulfurizing bacterial strain was isolated and identified as Gordona strain CYKS1. Strain CYKS1 was found to transform DBT to 2-hydroxybiphenyl via the 4S pathway and to be able to also use organic sulfur compounds other than DBT as a sole sulfur source. Its desulfurization activity was susceptible to sulfate repression. Active resting cells for desulfurization could be prepared only in the early growth phase. When two types of diesel oils, middle distillate unit feed (MDUF) and light gas oil (LGO) containing various organic sulfur compounds including DBT, were treated with resting cells of strain CYKS1 for 12 h, the total sulfur content significantly decreased, from 0.15% (wt/wt) to 0.06% (wt/wt) for MDUF and from 0.3% (wt/wt) to 0.25% (wt/wt) for LGO. The newly isolated strain CYKS1 is considered to have good potential for application in the biodesulfurization of fossil fuels.  相似文献   

5.
To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study, gamma-Al2O3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of Pseudomonas delafieldii R-8 cell, a desulfurization strain. gamma-Al2O3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope.  相似文献   

6.
Bacterial biofilms provide high cell density and a superior adaptation and protection from stress conditions compared to planktonic cultures, making them a very promising approach for bioremediation. Several Rhodococcus strains can desulfurize dibenzothiophene (DBT), a major sulphur pollutant in fuels, reducing air pollution from fuel combustion. Despite multiple efforts to increase Rhodococcus biodesulfurization activity, there is still an urgent need to develop better biocatalysts. Here, we implemented a new approach that consisted in promoting Rhodococcus erythropolis biofilm formation through the heterologous expression of a diguanylate cyclase that led to the synthesis of the biofilm trigger molecule cyclic di-GMP (c-di-GMP). R. erythropolis biofilm cells displayed a significantly increased DBT desulfurization activity when compared to their planktonic counterparts. The improved biocatalyst formed a biofilm both under batch and continuous flow conditions which turns it into a promising candidate for the development of an efficient bioreactor for the removal of sulphur heterocycles present in fossil fuels.  相似文献   

7.
The range of sulfur compounds in fuel oil and the substrate range and preference of the biocatalytic system determine the maximum extent to which sulfur can be removed by biodesulfurization. We show that the biodesulfurization apparatus in Rhodococcus sp. strain ECRD-1 is able to attack all isomers of dibenzothiophene including those with at least four pendant carbons, with a slight preference for those substituted in the α-position. With somewhat less avidity, this apparatus is also able to attack substituted benzothiophenes with between two and seven pendant carbons. Some compounds containing sulfidic sulfur are also susceptible to desulfurization, although we have not yet been able to determine their molecular identities.  相似文献   

8.
Deep desulfurization of oil and its fractions is currently performed by hydration at high temperature and hydrogen pressure, which makes the process rather expensive. Searches for alternative modes for desulfurization, among which is biodesulfurization, are intensely in progress. In this review, the following subjects are discussed: microorganisms capable of desulfurizing petroleum products, mechanisms of their activity, achievements in the field of process development, and disadvantages of the method. The existing level of knowledge is insufficient for immediate implementation of an industrial biotechnological process for sulfur elimination from oil and motor fuel and it can only be regarded as a medium-term (10–15 years) prospect.  相似文献   

9.
石油生物催化脱硫的研究进展   总被引:5,自引:0,他引:5  
石油生物催化脱硫技术是新兴的极具潜力的石油非加氢脱硫技术,在降低轻质油品生产成本、提高油品质量和环境保护等方面显示出潜在的优势,被誉为21世纪的石油脱硫技术。本文主要对石油生物催化脱硫技术特点、各种降解路线和研究现状进行了综述,指出了石油生物催化脱硫技术存在的问题,并提出了进一步研究发展的方向。  相似文献   

10.
The transfer of dibenzothiophene (DBT) and its derivatives into cells is a critical step for biodesulfurization. The desulfurization reactions of resting cells and cell lysate were studied, which showed that the desulfurization rate of DBT, especially 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) in Rhodococcus erythropolis LSSE8-1 was seriously affected by the transfer into cells. The inhibited effect of NaN3 on desulfurization reactions was studied, which confirmed that the transfer of DBT into cells was an active transport in R. erythropolis LSSE8-1. The uptake-genes of DBT and its derivatives (HcuABC) of Pseudomonas delafieldii R-8 were introduced into the specific desulfurization bacterium, R. erythropolis LSSE8-1. Compared with the wild type, the strains bearing HcuABC genes showed a higher desulfurization activity. The desulfurization ratio of DBT showed a 19% increase, and 13% increase of 4, 6-DMDBT.  相似文献   

11.
Li GQ  Li SS  Qu SW  Liu QK  Ma T  Zhu L  Liang FL  Liu RL 《Biotechnology letters》2008,30(10):1759-1764
Substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) remain in diesel oil following conventional desulfurization by hydrodesulfurization. A mixture of washed cells (13.6 g dry cell wt l−1) of Rhodococcus erythropolis DS-3 and Gordonia sp. C-6 were employed to desulfurize hydrodesulfurized diesel oil; its sulfur content was reduced from 1.26 g l−1 to 180 mg l−1, approx 86% (w/w) of the total sulfur was removed from diesel oil after three cycles of biodesulfurization. The average desulfurization rate was 0.22 mg sulfur (g dry cell wt)−1 h−1. A bacterial mixture is therefore efficient for the practical biodesulfurization of diesel oil.  相似文献   

12.
Biodesulfurization and the upgrading of petroleum distillates   总被引:30,自引:0,他引:30  
Biotechnology offers an alternative way to process fossil fuels. There have been several important advances in the elucidation of the mechanisms of biodesulfurization and the development of a biocatalytic desulfurization process. These include a detailed analysis of the rate and extent of desulfurization of real target molecules in a diesel matrix, the directed evolution of rate- and extent-limiting enzymes for better performance and the expression of the genes in alternative hosts. Process innovations include new reactor designs, separations and recovery strategies and the production of value-added byproducts during desulfurization.  相似文献   

13.
The range of sulfur compounds in fuel oil and the substrate range and preference of the biocatalytic system determine the maximum extent to which sulfur can be removed by biodesulfurization. We show that the biodesulfurization apparatus in Rhodococcus sp. strain ECRD-1 is able to attack all isomers of dibenzothiophene including those with at least four pendant carbons, with a slight preference for those substituted in the alpha-position. With somewhat less avidity, this apparatus is also able to attack substituted benzothiophenes with between two and seven pendant carbons. Some compounds containing sulfidic sulfur are also susceptible to desulfurization, although we have not yet been able to determine their molecular identities.  相似文献   

14.
Recent advances in petroleum microbiology.   总被引:23,自引:0,他引:23  
Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H(2)S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.  相似文献   

15.
The expression of biodesulfurization genes (dsz) in Rhodococcus erythropolis strain KA2-5-1 is repressed by sulfate which is the product of biodesulfurization. The application of a sulfate non-repressible promoter could be effective in enhancing biodesulfurization. A promoter-probe transposon was constructed using the promoterless, red-shifted green fluorescence protein gene (rsgfp). A 340 bp putative promoter element, designated kap1, was isolated from a strain KA2-5-1 recombinant that had shown high fluorescence intensity. The activity of kap1 was not affected by 1 mM sulfate. It gave about a 2-fold greater activity than the 16S ribosomal RNA promoter in R. erythropolis strain KA2-5-1 and is therefore useful for expressing desulfurization genes in rhodococcal strains.  相似文献   

16.
Recent Advances in Petroleum Microbiology   总被引:26,自引:0,他引:26       下载免费PDF全文
Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H2S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.  相似文献   

17.
A metabolic pathway for the biodesulfurization of model organosulfur compounds e.g., dibenzothiophene (DBT), is proposed. This pathway, defined as extended 4S pathway, incorporates the traditional 4S pathway with the methoxylation pathway from 2-hydroxybiphenyl (HBP) to 2-methoxybiphenyl (2-MBP). The formation of 2-MBP was confirmed by the gas chromatography–mass spectrometry (GC–MS) analysis. A similar pathway was also obtained in the desulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT), confirming the methoxylation reaction in the desulfurization process by the Mycobacterium sp. strain. Compared with 2-HBP, 2-MBP has much slighter inhibition effect on the cell growth and desulfurization activity. Thus, the methoxylation pathway from 2-HBP to 2-MBP would make less inhibitory effect on the microbe. The new pathway with 2-MBP as the end product may be an alternative for the further desulfuration of the fossil fuels.  相似文献   

18.
Biodesulfurization is regarded as a promising alternative technology for desulfurization from diesel oil due to its mild operating conditions and its ability to remove sulfur from alky dibenzothiophenes (Cx-DBTs). The diesel oil contains complex mixtures of Cx-DBTs in which individual microbial biodesulfurization may be altered. In this work, interactions among three typical Cx-DBTs such as dibenzothiophenes (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) were investigated using Mycobacterium sp. ZD-19 in an airlift reactor. The experimental results indicated that the desulfurization rates would decrease in the multiple Cx-DBTs system compared to the single Cx-DBT system. The extent of inhibition depended upon the substrate numbers, concentrations, and affinities of the co-existing substrates. For example, compared to individual desulfurization rate (100 %), DBT desulfurization rate decreased to 75.2 % (DBT + 4,6-DMDBT), 64.8 % (DBT + 4-MDBT), and 54.7 % (DBT + 4,6-DMDBT + 4-MDBT), respectively. This phenomenon was caused by an apparent competitive inhibition of substrates, which was well predicted by a Michaelis–Menten competitive inhibition model.  相似文献   

19.
Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes'' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation.  相似文献   

20.
Microbial desulfurization is potentially an alternative process to chemical desulfurization of fossil fuels and their refined products. The dibenzothiophene desulfurizing system of Rhodococcus erythropolis includes DszD which is an NADH-dependent FMN oxidoreductase with 192 residues that is responsible for supplying reducing equivalents in the form of FMNH2 to monooxygenases, DszA and DszC. We performed amino acid sequence comparisons and structural predictions based on the crystal structure of available pdb files for three flavin reductases PheA2, HpaCTt and HpaCSt with the closest structural homology to IGTS8 DszD. The Thr62 residue in DszD was substituted with Asn and Ala by site-directed single amino acid mutagenesis. Variants T62N and T62A showed 5 and 7 fold increase in activities based on the recombinant wild type DszD, respectively. This study revealed the critical role of position 62 in enzyme activity. These results represent the first experimental report on flavin reductase mutation in R. erythropolis and will pave the way for further optimization of the biodesulfurization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号