首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zostera marina L. (eelgrass) from Great Bay Estuary, New Hampshire and Maine (USA), was transplanted in outdoor mesocosms and subjected to four light treatments (100, 58, 34 and 11% surface irradiance, SI) between May and September 2003 to investigate the relationship between light availability and the growth and survival of eelgrass. Evaluating eelgrass seedlings and adult mature plants demonstrated no differences in photosynthetic response after 22 days of acclimation. During at least the first 19 days of shading, maximum electron transport rate (ETRmax) rate of eelgrass did not differ significantly between light treatments. After 40 days, a significant reduction in ETRmax and minimum saturating light was observed in plants growing at 34% SI and below. Morphological responses exhibited a linear increasing trend with greater light. 34% SI exhibited drastic reductions (to less than 25% of control) in rhizome growth, shoot density, shoot production, number of nodes per plant and plant weight at the end of the study (81 days). Shoot to root ratio at 34% SI increased by > 50%. Plants shaded to 58% SI showed no significant difference from the control in plant parameters except an increased rate of rhizome elongation. Our results link the lower shoot densities with shading to the slow growth rate of horizontal rhizomes and a total lack of lateral expansion at 11% SI. ETRmax declined over time in plants at 11% SI resulting in 81% mortality, no lateral branching and no morphological development, indicating that the minimum light required for long-term eelgrass growth and survival is greater than the previously suggested 11% SI. We demonstrate that eelgrass plants at these latitudes can persist at light levels of 58% SI and above, and are light-limited at 34% SI and below.  相似文献   

2.
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.  相似文献   

3.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

4.
Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 mol CO2 m–2 s–1 as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m–2 s–1. Stomatal density varied from 144 mm–2 in plants grown in high PPFD to 84 mm–2 in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g–1 on a unit fresh weight basis, and 4.3 vs 3.7 mg dm–2 on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.Abbreviations the initial slope of the photosynthesis vs PPFD curve - Pn max the light-saturated photosynthetic rate - PPFD photosynthetic photon flux density  相似文献   

5.
山豆根(Euchresta japonica)为我国II级重点保护野生植物。该研究通过设置不同遮阴网的层数和采用不同浓度的聚乙二醇溶液浇灌,探讨了山豆根光合特性对光强和干旱的响应。结果表明, 山豆根叶片的饱和光强为683.06~907.07mmol/(m2·s); 单层遮阴处理叶片的最大电子传递速率和最大净光合速率整体高于双层遮阴处理,其中单层遮阴且未进行干旱处理的叶片最大电子传递速率和最大净光合速率最高,分别为55.36和6.73mmol/(m2·s);相同遮阴条件下,叶片的最大净光合速率及其对应的饱和光强均随干旱程度增加整体呈下降趋势;单层遮阴条件下的蒸腾速率和水分利用效率均整体高于双层遮阴条件下的。不同处理下叶片光系统II的实际光化学效率、光化学猝灭系数以及非光化学猝灭系数等整体上均无显著差异(P>0.05)。山豆根属半阳生植物,其叶片利用弱光能力较强,植株具有较强的耐干旱能力。因此,建议在开展野外回归、迁地保护、人工栽培等工作时,进行适当遮阴处理并保持充足的土壤含水量。  相似文献   

6.
An empirical light simulation model was applied to estimate stand scale photosynthesis in a deciduous broadleaved forest in central Japan. Based on diurnal courses of photosynthetically active photon flux density (PPFD), we characterized the components of incoming light within the forest canopy, and found that the instantaneous relative PPFD (PPFD under the canopy relative to that above the canopy) under diffuse light condition was a reliable estimator of the intensity and duration of PPFD. We calculated the daily photosynthesis (Aday) for each PPFD class using photosynthesis–light response curves. Model simulated Aday were corroborated with the estimates obtained from the nearby CO2 flux tower. The result demonstrated the potential of the light simulation model. The light use efficiency of two dominant species, Betula ermanii as overstory and Sasa senanensis as understory species, were then evaluated. At the forest understory, PPFD under 50 mol m–2 s–1 contributed to 77% of the sunshine duration on a completely clear day. Therefore, a higher apparent quantum yield for S. senanensis enhanced the utilization of low PPFD for photosynthesis. On the other hand, at the upper forest canopies, B. ermanii with a higher light-saturated photosynthetic rate used high PPFD efficiently. Consequently, potential of daily net photosynthesis for both B. ermanii and S. senanensis was high under each light condition. Such interspecific difference in the patterns of light utilization was suggested as one of factors allowing coexistence of the two species in the study forest.  相似文献   

7.
Parr–smolt transformation and growth were studied in captive offspring of anadromous Arctic charr (Salvelinus alpinus) from the Hals watercourse in northern Norway (70°N), held either at a natural temperature (< 1 °C until May) or at a temperature elevated to 6 °C in late March. In mid-May, 5 weeks after the increase in photoperiod from 8:16 h light:dark to continuous light, gill Na+, K+-ATPase activity started to increase in both temperature groups, concurrent with the final development of full seawater tolerance. Temperature had no effect on the development of gill Na+, K+-ATPase activity, or on hypoosmoregulatory ability. The fish in both treatments resumed growth in mid-May, but from then on growth was faster in the elevated than in the ambient temperature group. In the former group, fish mass doubled in 6 weeks (from 65 to 137 g), and growth ceased at the time when the fish were about to complete their parr–smolt transformation. These findings show that an early vernal temperature increase advances the seasonal growth cycle, but not the parr–smolt transformation, in anadromous Arctic charr.  相似文献   

8.
Most models of carbon gain as a function of photosynthetic irradiance assume an instantaneous response to increases and decreases in irradiance. High- and low-light-grown plants differ, however, in the time required to adjust to increases and decreases in irradiance. In this study the response to a series of increases and decreases in irradiance was observed in Chrysanthemum × morifolium Ramat. “Fiesta” and compared with calculated values assuming an instantaneous response. There were significant differences between high- and low-light-grown plants in their photosynthetic response to four sequential photosynthetic photon flux density (PPFD) cycles consisting of 5-minute exposures to 200 and 400 micromoles per square meter per second (μmol m−2s−1). The CO2 assimilation rate of high-light-grown plants at the cycle peak increased throughout the PPFD sequence, but the rate of increase was similar to the increase in CO2 assimilation rate observed under continuous high-light conditions. Low-light leaves showed more variability in their response to light cycles with no significant increase in CO2 assimilation rate at the cycle peak during sequential cycles. Carbon gain and deviations from actual values (percentage carbon gain over- or underestimation) based on assumptions of instantaneous response were compared under continuous and cyclic light conditions. The percentage carbon gain overestimation depended on the PPFD step size and growth light level of the leaf. When leaves were exposed to a large PPFD increase, the carbon gain was overestimated by 16 to 26%. The photosynthetic response to 100 μmol m−2 s−1 PPFD increases and decreases was rapid, and the small overestimation of the predicted carbon gain, observed during photosynthetic induction, was almost entirely negated by the carbon gain underestimation observed after a decrease. If the PPFD cycle was 200 or 400 μmol m−2 s−1, high- and low-light leaves showed a carbon gain overestimation of 25% that was not negated by the underestimation observed after a light decrease. When leaves were exposed to sequential PPFD cycles (200-400 μmol m−2 s−1), carbon gain did not differ from leaves exposed to a single PPFD cycle of identical irradiance integral that had the same step size (200-400-200 μmol m−2 s−1) or mean irradiance (200-300-200 μmol m−2 s−1).  相似文献   

9.
The effects of two light treatments (photosynthetically active photon flux density of either 650 or 1950 µmol m–2 s–1) on the photochemical efficiency of Photosystem II (PS II) (measured as variable to maximum fluorescence ratio) and on the xanthophyll cycle components was studied in wilted Zea mays leaves. For comparison, these parameters were followed under the same light conditions in well-hydrated leaves maintained either in normal or CO2-free air. The net CO2 assimilation of dehydrated leaves declined rapidly as their relative water content (RWC) decreased from 100 to 60% while the PS II efficiency measured after a prolonged dark period of 16 h declined only when RWC leaves was lower than 60%. Furthermore, drought caused an increase in the pool size of the xanthophyll cycle pigments and the presence of a sustained elevated level of zeaxanthin and antheraxanthin at the end of the long dark period. The leaf water deficit enhanced the sensitivity of PS II efficiency to light exposure. During illumination, strong inhibition of PS II efficiency and large violaxanthin deepoxidation was observed in wilted leaves even under moderate photon flux density compared to control leaves in the same conditions. After 2 h of darkness following the light treatment, the PS II efficiency that is dependent on the previous PPFD, decreased with leaf water deficit. Moreover, zeaxanthin epoxidation led to an accumulation of antheraxanthin in dehydrated leaves. All these drought effects on PS II efficiency and xanthophyll cycle components were also obtained in well-hydrated leaves by short-term CO2 deprivation during illumination. We conclude that the increased susceptibility of PS II efficiency to light in wilted maize leaves is mainly explained by the decrease of CO2 availability and the resulting low net CO2 assimilation.  相似文献   

10.
Translocation of carbon (C) and nitrogen (N) was investigated in response to shading of the seagrass Posidonia sinuosa in control (ambient light) and shade (below minimum light requirement) treatments after 10 d shading. A mature leaf was incubated in situ in 13C- and 15N-enriched seawater for 2 h and the appearance of the isotopes in the young leaf and adjacent rhizome monitored over 29 d. C and N isotopes gradually reduced in the mature leaf: of 15N contained in the entire shoot (mature leaf, young leaf and 4 cm rhizome), 95% (control) and 97% (shade) was found in the mature leaf after 2 h incubation and only 75% and 60% remained in the mature leaf after 29 d; 98% and 94% of 13C was found in the mature leaf after 2 h, and it had reduced to 36% and 44% after 29 d. This corresponded to an equal increase in the young leaf + rhizome indicating that the mature leaf is a source of these nutrients to the young leaf and rhizome. C translocation from mature leaves was not significantly affected by the shade treatment. In contrast, there was an increase in 15N taken up by the mature leaves (1.9× higher in the shade), the percent of 15N translocated to the young leaf and rhizome (24% in control and 40% in shade) and N concentration in the young leaf (1.24% control and 1.41% shade) and rhizome (0.86% control and 0.99% shade). Resorption of C and N was also estimated from changes in the total C and N content of the mature leaf over 29 d. N resorption from the mature leaf contributed up to 63% of young leaf N requirements in the control treatment but only 41% in the shade treatment. We conclude that uptake and translocation of N by mature leaves is a response to shading in P. sinuosa and would provide additional N to growing leaves, enhancing light harvesting efficiency.  相似文献   

11.
The influence of ontogeny, light environment and species on relationships of relative growth rate (RGR) to physiological and morphological traits were examined for first-year northern hardwood tree seedlings. Three Betulaceae species (Betula papyrifera, Betula alleghaniensis and Ostrya virginiana) were grown in high and low light and Quercus rubra and Acer saccharum were grown only in high light. Plant traits were determined at four ages: 41, 62, 83 and 104 days after germination. In high light (610 mol m–2 s–1 PPFD), across species and ages, RGR was positively related to the proportion of the plant in leaves (leaf weight ratio, LWR; leaf area ratio, LAR), in situ rates of average canopy net photosynthesis (A) per unit mass (Amass) and per unit area (Aarea), and rates of leaf, stem and root respiration. In low light (127 mol m–2 s–1 PPFD), RGR was not correlated with Amass and Aarea whereas RGR was positively correlated with LAR, LWR, and rates of root and stem respiration. RGR was negatively correlated with leaf mass per area in both high and low light. Across light levels, relationships of CO2 exchange and morphological characteristics with RGR were generally weaker than within light environments. Moreover, relationships were weaker for plant parameters containing a leaf area component (leaf mass per area, LAR and Aarea), than those that were solely mass-based (respiration rates, LWR and Amass). Across light environments, parameters incorporating the proportion of the plant in leaves and rates of photosynthesis explained a greater amount of variation in RGR (e.g. LWR*Amass, R2=0.64) than did any single parameter related to whole-plant carbon gain. RGR generally declined with age and mass, which were used as scalars of ontogeny. LWR (and LAR) also declined for seven of the eight species-light treatments and A declined in four of the five species in high light. Decreasing LWR and A with ontogeny may have been partially responsible for decreasing RGR. Declines in RGR were not due to increased respiration resulting from an increase in the proportion of solely respiring tissue (roots and stems). In general, although LWR declined with ontogeny, specific rates of leaf, stem, and root respiration also decreased. The net result was that whole-plant respiration rates per unit leaf mass decreased for all eight treatments. Identifying the major determinants of variation in growth (e.g. LWR*Amass) across light environments, species and ontogeny contributes to the establishment of a framework for exploring limits to productivity and the nature of ecological success as measured by growth. The generality of these relationships both across the sources of variation we explored here and across other sources of variation in RGR needs further study.  相似文献   

12.
Stomatal closure, relative water content (RWC) and vegetative growth were monitored in Ilex paraguariensis plants grown under well-watered conditions with a photosynthetic photon flux density (PPFD) varying from 100% to 1.5%, and sprayed weekly with either distilled water (control) or 1.89 mM abscisic acid (ABA). ABA treatments caused stomatal closure, ranging from 62% to 73%. These treatments also increased RWC in the early evening from 82% to 92% and 88% to 94% in mature and immature leaves, respectively. Such alleviation of the water stress was correlated with increases in leaf area, leaf dry weight (DW), shoot length and shoot DW. On day 35 from the beginning of the experiment, the increases in DW of both leaves and shoots were 1.5-fold at the 1.5% PPFD and 3-fold (for leaves) and 4.5-fold (for shoots) under 100% PPFD. In water-sprayed control plants grown under 1.5% PPFD shoot length also increased significantly, although these shoots contained more ABA (assessed by capillary gas chromatography–mass spectrometry) than those of plants grown under 100% PPFD. These results show that ABA sprayed on to leaves promotes growth in I. paraguariensis plants by alleviating diurnal water stress.  相似文献   

13.
Elevated (700 μmol mol−1) and ambient (350 μmol mol−1) CO2 effects on total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, photosynthesis (A), and photoinhibition during 6 d at low temperature were measured on wild type (WT), and rbcS antisense DNA mutants (T3) of tobacco (Nicotiana tabacum L.) with 60% of WT total Rubisco activity (Rodermel et al. (1988) Cell 55: 673–681). Prior to the low temperature treatment, A and quantum yield of PSII photochemistry in the light adapted state (φPSII) were significantly lower in T3 compared to WT at each CO2 level. At this time, total nonphotochemical quenching (NPQTotal) levels were near maximal (0.75–0.85) in T3 compared to WT (0.39–0.50). A was stimulated by 107% in T3 and 25% in WT at elevated compared to ambient CO2. Pre-treatment acclimation to elevated CO2 occurred in WT resulting in lower Rubisco activity per unit leaf area and reduced stimulation of A. At low temperature, A of WT was similar at elevated and ambient CO2 while stimulation of A by elevated CO2 in T3 was reduced. In addition, at low temperature we measured significantly lower photochemical quenching at elevated CO2 compared to ambient CO2 in both genotypes. NPQTotal was similar (0.80–0.85) among all treatments. However, a larger proportion of NPQTotal was composed of qI,d, the damage subcomponent of the more slowly relaxing NPQ component, qI, in both genotypes at elevated compared to ambient CO2. Greater qI,d, at elevated CO2 during and after the low temperature treatment was not related to pre-treatment differences in total Rubisco activity.  相似文献   

14.
About 70% of the shoots developed from nodal explants ofGentiana triflora flowered in vitroondouble strength WPM medium containing 3% (w/v) sucrose, 0.5mg/l BA after 12 weeks of culture in a growth room at 22°Cwith continuous illumination (PPFD=60molm–2 s–1). The influences oninvitro shoot development and flowering of several factors includingthe position of the explant, requirements for sucrose, cytokinin orGA3, variations of pH and photosynthetic photon flux density (PPFD)were investigated. In vitro flowering but not shootdevelopment of G. triflora decreased notably withincreaseddistance from the apex of the shoot, indicating the presence of a floralgradient in the micropropagated shoots. Conversely, as little as 0.01mg l–1 GA3 in the medium promotedshootdevelopment but even up to 0.2 mg l–1GA3 did not induce in vitro flowering.Even though BA could substitute GA3 for a high level of shootdevelopment, it also promoted a high level of in vitroflowering at the PPFD of 60 molm–2 s–1. Sucrose was required for shootdevelopment and flowering in vitro and higher levels ofPPFD could not compensate effectively for the omission of the sugar from themedium. In general, the effects of different concentrations of BA in the mediumor variations of pH on shoot development and flowering invitro were found to be influenced by PPFD. A novel observation isthat precocious flowering of micropropagated gentian shoots did not occur ifthey were first cultured for 5 weeks in the dark before transfer to the lightcondition.  相似文献   

15.
The effect of different light qualities (blue, green, white, red and far-red) on ethylene production in leaf discs and flower petal discs of Begonia × hiemalis cv. Schwabenland Red was studied. All the light qualities, except far-red, reduced the ACC-conversion to ethylene in leaf discs by about 70% at a photosynthetic photon flux density (PPFD) of 20 mol m–2s–1.Blue and green light were less inhibitory than white and red light at lower PPFD. In all treatments far-red light at 0.5 mol m–2s–1 of photon flux density (PFD) stimulated the ACC-conversion to ethylene in leaf discs by about 60–90% compared to the dark-incubated control. White and red light strongly inhibited the -naphthalene-acetic acid (NAA) stimulated ethylene synthesis in leaf discs. The results may suggest that the ethylene production is controlled by phytochrome in the leaves but not in the petals. Lack of coaction of any light quality with silver ions on ethylene production in leaf and petal discs was also observed.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene forming enzyme - NAA -naphthalene-acetic acid - PFD photon flux density - PPFD photosynthetic photon flux density - RH relative air humidity - SAM S-adenosylmethionine - STS silver thiosulphate  相似文献   

16.
Summary Hosta ‘Blue Vision’, a shade-adapted perennial, was successfully acclimatized in high, natural light conditions in the research AcclimatronTM at Clemson University, Clemson, SC during the summer of 2000. The supplemental CO2 levels achieved during acclimatization were 710±113, 2396±121, and 5641±119 μmol mol−1, approximately 2×, 6×, and 15× ambient CO2. Plants were maintained in H2O-saturated atmospheres and protected from temperature increases associated with high light intensity. In the 5 wk following ex vitro transfer, plantlet roots grew at the 2× CO2 level, but shoot biomass was unaffected. Results for the 6× and 15× CO2 levels were comparable and provided the best plantlet growth. The “doubling time’ that is characteristic of exponential growth was 10.8 and 9.8 d for root and shoot dry weights, respectively. There was no indication of light saturation of net photosynthetic rate (NPR) over the photosynthetic photon flux density (PPFD) range of 100–1200 μmolm−2s−1 experienced during this study. An interaction between CO2 and light intensity levels was detected for NPR of Hosta ‘Blue Vision’ with CO2 saturation occurring at approximately 2800 μmol mol−1. regardless of light level. Furthermore, at the optimal CO2 level, NPR increased quadratically as light intensity increased, and NPR was greatest at the maximum light intensity (PPFD: 1200 μmol m−2s−1).  相似文献   

17.
Rozema  Jelte  Broekman  Rob  Lud  Daniela  Huiskes  Ad H.J.  Moerdijk  Tanja  de Bakker  Nancy  Meijkamp  Barbara  van Beem  Adri 《Plant Ecology》2001,154(1-2):101-115
Mini UV lamps were installed over antarctic plants at Léonie Island, Antarctic peninsula, and shoot length measurements of Deschampsia antarctica were performed during the austral summer January–February 1999.We studied the response of the antarctic hairgrass, Deschampsia antarctica to enhanced UV-B. In a climate room experiment we exposed tillers of Deschampsia antarctica, collected at Léonie Island, Antarctic peninsula, to ambient and enhanced levels of UV-B radiation. In this climate room experiment with 0, 2.5 and 5 kJ m–2 day–1 UV-BBE treatments we observed that length growth of shoots at 2.5 and 5 kJ m–2 day–1 UV-BBE was markedly reduced compared to 0 kJ m–2 day–1 UV-BBE. In addition, there was an increased number of shoots and increased leaf thickness with enhanced UV-B. The Relative Growth Rate (RGR) was not affected by UV-B, possibly because reduced shoot length growth by enhanced UV-B was compensated by increased tillering. Light response curves of net leaf photosynthesis of plants exposed to 5 kJ m–2 day–1 UV-BBE did not differ from those exposed to 0 kJ m–2 day–1 UV-BBE. The content of UV-B absorbing compounds of plants exposed to increasing UV-B did not significantly change.Mini UV-B lamp systems were installed in the field, to expose the terrestrial antarctic vegetation at Léonie Island to enhanced solar UV-B. In that study, the increment of shoot length of tagged plants of Deschampsia antarctica during the January-February 1999 at Léonie Island, was recorded and compared to shoot length growth under controlled conditions.The consequences of enhanced UV-B radiation as a result of ozone depletion for the terrestrial antarctic ecosytems are discussed.  相似文献   

18.
Rapid light-response curves (RLC) of variable chlorophyll fluorescence were measured on estuarine benthic microalgae with the purpose of characterising its response to changes in ambient light, and of investigating the relationship to steady-state light-response curves (LC). The response of RLCs to changes in ambient light (E, defined as the irradiance level to which a sample is acclimated to prior to the start of the RLC) was characterised by constructing light-response curves for the RLC parameters α RLC, the initial slope, ETRm,RLC, the maximum relative electron transport rate, and E k,RLC, the light-saturation parameter. Measurements were carried out on diatom-dominated suspensions of benthic microalgae and RLC and LC parameters were compared for a wide range of ambient light conditions, time of day, season and sample taxonomic composition. The photoresponse of RLC parameters was typically bi-phasic, consisting of an initial increase of all parameters under low ambient light (E < 21–181 μmol m−2 s−1), and of a phase during which α RLC decreased significantly with E, and the increase of ETRm,RLC and E k,RLC was attenuated. The relationship between RLC and LC parameters was dependent on ambient irradiance, with significant correlations being found between α RLC and α, and between ETRm,RLC and ETRm, for samples acclimated to low and to high ambient irradiances, respectively. The decline of α RLC under high light (Δα RLC) was strongly correlated (P < 0.001 in all cases) with the level of non-photochemical quenching (NPQ) measured before each RLC. These results indicate the possibility of using RLCs to characterise the steady-state photoacclimation status of a sample, by estimating the LC parameter E k, and to trace short-term changes in NPQ levels without dark incubation.  相似文献   

19.
Monocots     
Green nectaries have been frequently mentioned in the literature, leading to the assumption that photosynthesis of nectaries can supply the carbohydrates secreted in the nectar, especially when storage of starch is seen in the plastids in nectaries and this starch disappears during secretion. Photosynthesis in nectaries can also provide reduction equivalents for the nectar–redox cycle and energy for secretion. However, quantitative data on the photosynthetic capacity of nectaries are largely missing. Therefore, in the present study, the photosynthetic capacity of green nectaries from a range of plants was screened; 20 floral nectaries (including six septal nectaries) and six extrafloral nectaries were studied. For the screening, chlorophyll fluorescence parameters were measured as depending on photosynthetic photon flux density (PPFD). Parameters measured were basic ground fluorescence (F) and quantum yield (Y0) of the dark adapted sample at 0 PPFD. From the light saturation curves saturating PPFD (PPFDsat), quantum yield at saturation (Ysat) and maximum apparent photosynthetic electron transport rates (ETRmax) were obtained. For comparison, leaves of the plants were also measured. In most cases, the performance of the nectaries was lower than that of the leaves. F was lower in 14 floral and four extrafloral nectaries (69% of total), ETRmax was lower in 18 floral and four extrafloral nectaries (85%), Ysat was lower in 15 floral and three extrafloral nectaries (69%). In 18 floral and two extrafloral nectaries (77%) Y0 was well below 0.8, indicating photoinhibition. In contrast, the range of ETRmax for green nectaries was 25–140 μmol m?2 s?1 and overlaps well with that of green tissues in general. The lower end of the range of rates of photosynthetic carbon dioxide (CO2) uptake of sun leaves in the literature is 10 μmol CO2 m?2 s?1. Taking this value for sun‐adapted green nectaries, i.e. having a PPFDsat > 1000 μmol m?2 s?1, with an area of nectar tissue measured as 3–50 mm2 per flower, sugar secretion related to photosynthetic CO2 fixation in the green nectaries is estimated at approximately 0.2–3.0 μmol hexose units flower?1 day?1. This is compares well in order of magnitude with the range of secretion given in the literature and clearly suggests that photosynthetic activity of green nectaries can explain a significant part, if not all, of the sugar secreted. In some nectaries ETR did not saturate with PPFD. This could be attributable to spillover from photosystem II to photosystem I and cyclic photosynthetic electron transport. It is in agreement with observations in the literature and my preliminary findings that nectary plastids often lack grana thylakoids where photosytem II is located. Cyclic photophosphorylation could provide adenosine triphosphate (ATP) energy for the nectaries. This needs further investigation. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 1–11.  相似文献   

20.
Genoud  C.  Sallanon  H.  Hitmi  A.  Maziere  Y.  Coudret  A. 《Photosynthetica》2000,38(4):629-634
The rooting of shoots of micropropagated Rosa hybrida cv. Madame Delbard was conducted on MS medium with 30 kg m–3 sucrose or on hydroponic medium (containing less mineral salts), under higher photosynthetic photon flux density (PPFD) (100 in comparison with 45 µmol m–2 s–1) and flushed by ambient air [AC, 340 µmol(CO2) mol–1] or by CO2-enriched air (EC, 2 500 µmol mol–1) and lower relative humidity (80–90 % vs. 96–99 %). This cultivation led to plantlets with longer roots and adventitious root formation. Net photosynthetic rate and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities, RuBPCO/phosphoenolpyruvate carboxylase activities ratio, and starch accumulation increased under these conditions. After 14 d, plantlets had functional stomata and could be acclimated on open benches without gradual decrease in relative humidity. The percentage of survival was higher when the rooting took place in EC than in AC. However, the advantage acquired during rooting phase by plantlets cultured in liquid medium was not maintained after 4 weeks of acclimatisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号