首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state auditory-evoked potentials were recorded noninvasively from alert bottlenosed dolphins, Tursiops truncates, using suction cup electrodes placed on the scalp surface. Responses were elicited using continuous acoustic signals consisting of 2, 3, or 4 tones with lowest frequency at 1000 Hz or 5000 Hz, and having a maximum frequency separation of 171 Hz. Due to the interaction of the stimulus tones, the stimulus waveform was comprised of 1 to 6 dominant temporal envelope components. Evoked responses were averaged in the time domain and Fourier transformed for analysis. The spectrum of the averaged evoked potential contained peaks at Fourier components corresponding to all stimulus envelope frequencies. Thus, scalp potentials, representing the synchronized discharge of large neuronal assemblies, followed the low-frequency temporal envelope of the stimulating waveform whether comprised of 1, 3, or 6 dominant envelope components; this envelope following response (EFR) was the dependent variable in all experiments.  相似文献   

2.
Several mass strandings of beaked whales have recently been correlated with military exercises involving mid-frequency sonar highlighting unknowns regarding hearing sensitivity in these species. We report the hearing abilities of a stranded juvenile beaked whale (Mesoplodon europaeus) measured with auditory evoked potentials. The beaked whale’s modulation rate transfer function (MRTF) measured with a 40-kHz carrier showed responses up to an 1,800 Hz amplitude modulation (AM) rate. The MRTF was strongest at the 1,000 and 1,200 Hz AM rates. The envelope following response (EFR) input–output functions were non-linear. The beaked whale was most sensitive to high frequency signals between 40 and 80 kHz, but produced smaller evoked potentials to 5 kHz, the lowest frequency tested. The beaked whale hearing range and sensitivity are similar to other odontocetes that have been measured.  相似文献   

3.
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in dolphins (Turslops truncatus). The EFR was evoked by amplitude-modulated probes of various frequencies. A modulation rate of 600 Hz was found to fit the requirement to have a narrow spectrum and evoke EFR of large amplitude. Tuning curves were obtained within the frequency range from 11.2 to 110 kHz. The Q10 values of the obtained tuning curves varied from 12–14 at the 11.2 kHz center frequency to 17–20 at the 64–90 kHz frequencies.Abbreviations ABR auditory brainstem response - EFR envelope following response - ERB equivalent rectangular bandwidth  相似文献   

4.
Studies of auditory temporal resolution in birds have traditionally examined processing capabilities by assessing behavioral discrimination of sounds varying in temporal structure. Here, temporal resolution of the brown-headed cowbird (Molothrus ater) was measured using two auditory evoked potential (AEP)-based methods: auditory brainstem responses (ABRs) to paired clicks and envelope following responses (EFRs) to amplitude-modulated tones. The basic patterns observed in cowbirds were similar to those found in other songbird species, suggesting similar temporal processing capabilities. The amplitude of the ABR to the second click was less than that of the first click at inter-click intervals less than 10 ms, and decreased to 30% at an interval of 1 ms. EFR amplitude was generally greatest at modulation frequencies from 335 to 635 Hz and decreased at higher and lower modulation frequencies. Compared to data from terrestrial mammals these results support recent behavioral findings of enhanced temporal resolution in birds. General agreement between these AEP results and behaviorally based studies suggests that AEPs can provide a useful assessment of temporal resolution in wild bird species.  相似文献   

5.
Summary Doppler shift compensation behaviour in horseshoe bats, Rhinolophus rouxi, was used to test the interference of pure tones and narrow band noise with compensation performance. The distortions in Doppler shift compensation to sinusoidally frequency shifted echoes (modulation frequency: 0.1 Hz, maximum frequency shift: 3 kHz) consisted of a reduced compensation amplitude and/or a shift of the emitted frequency to lower frequencies (Fig. 1).Pure tones at frequencies between 200 and 900 Hz above the bat's resting frequency (RF) disturbed the Doppler shift compensation, with a maximum of intererence between 400 and 550 Hz (Fig. 2). Minimum duration of pure tones for interference was 20 ms and durations above 40 ms were most effective (Fig. 3). Interfering pure tones arriving later than about 10 ms after the onset of the echolocation call showed markedly reduced interference (Fig. 4). Doppler shift compensation was affected by pure tones at the optimum interfering frequency with sound pressure levels down to –48 dB rel the intensity level of the emitted call (Figs. 5, 6).Narrow bandwidth noise (bandwidth from ± 100 Hz to ± 800 Hz) disturbed Doppler shift compensation at carrier frequencies between –250 Hz below and 800 Hz above RF with a maximum of interference between 250 and 500 Hz above resting frequency (Fig. 7). The duration and delay of the noise had similar influences on interference with Doppler shift compensation as did pure tones (Figs. 8, 9). Intensity dependence for noise interference was more variable than for pure tones (-32 dB to -45 dB rel emitted sound pressure level, Fig. 10).The temporal and spectral gating in Doppler shift compensation behaviour is discussed as an effective mechanism for clutter rejection by improving the processing of frequency and amplitude transients in the echoes of horseshoe bats.Abbreviations CF constant frequency - FM frequency modulation - RF resting frequency - SPL sound pressure level  相似文献   

6.
Auditory evoked potentials (AEP) were used to measure the hearing range and auditory sensitivity of the American sand lance Ammodytes americanus. Responses to amplitude‐modulated tone pips indicated that the hearing range extended from 50 to 400 Hz. Sound pressure thresholds were lowest between 200 and 400 Hz. Particle acceleration thresholds showed an improved sensitivity notch at 200 Hz but not substantial differences between frequencies and only a slight improvement in hearing abilities at lower frequencies. The hearing range was similar to Pacific sand lance Ammodytes personatus and variations between species may be due to differences in threshold evaluation methods. AEPs were also recorded in response to pulsed sounds simulating humpback whale Megaptera novaeangliae foraging vocalizations termed megapclicks. Responses were generated with pulses containing significant energy below 400 Hz. No responses were recorded using pulses with peak energy above 400 Hz. These results show that A. americanus can detect the particle motion component of low‐frequency tones and pulse sounds, including those similar to the low‐frequency components of megapclicks. Ammodytes americanus hearing may be used to detect environmental cues and the pulsed signals of mysticete predators.  相似文献   

7.
It is unknown whether the fish utricle contributes to directional hearing. Here, we report response properties of single utricular fibers in a teleost fish (Dormitator latifrons) to linear accelerations at various stimulus frequencies and axes. Characteristic frequencies ranged from 50–400 Hz (median=80 Hz), and best frequencies shifted from 50 to 250 Hz with stimulus level. Best sensitivity of utricular fibers was distributed from –70 to –40 dB re: 1 g (mean=–52 dB), which is about 30 dB less sensitive than saccular fibers. Q50% fell between 0.16 and 11.50 (mean=2.04) at 15 dB above threshold. We observed temporal response patterns of entrained phase-locking, double phase-locking, phase-locked bursting, and non-phase-locked bursting. Most utricular fibers were directionally selective with various directional response profiles, and directional selectivity was stimulus-level dependent. Horizontal best-response axes were distributed in a 152° range while mid-sagittal best-response axes were clustered around the fish longitudinal axis, which is consistent with the horizontal orientation of the utricle and morphological polarizations of utricular hair cells. Therefore, results of this study indicate that the utricle in this vertebrate plays an auditory role in azimuth and that utricular fibers extend the response dynamic range of this species in directional hearing.  相似文献   

8.
The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.  相似文献   

9.
We examined the mechanisms that underlie band-suppression amplitude modulation selectivity in the auditory midbrain of anurans. Band-suppression neurons respond well to low (5–10 Hz) and high (>70 Hz) rates of sinusoidal amplitude modulation, but poorly, if at all, to intermediate rates. The effectiveness of slow rates of sinusoidal amplitude modulation is due to the long duration of individual pulses; short-duration pulses (<10 ms) failed to elicit spikes when presented at 5–10 pulses s–1. Each unit responded only after a threshold number of pulses (median=3, range=2–5) were delivered at an optimal rate. The salient stimulus feature was the number of consecutive interpulse intervals that were within a cell-specific tolerance. This interval-integrating process could be reset by a single long interval, even if preceded by a suprathreshold number of intervals. These findings indicate that band-suppression units are a subset of interval-integrating neurons. Band-suppression neurons differed from band-pass interval-integrating cells in having lower interval-number thresholds and broader interval tolerance. We suggest that these properties increase the probability of a postsynaptic spike, given a particular temporal pattern of afferent action potentials in response to long-duration pulses, i.e., predispose them to respond to slow rates of amplitude modulation. Modeling evidence is provided that supports this conclusion.Abbreviations AM amplitude modulation - PRR pulse repetition rate - SAM sinusoidal amplitude modulation  相似文献   

10.
Averaged evoked potentials in the inferior colliculus (IC), medial geniculate nucleus (MG) and reticular formation (RF) of chronically implanted and freely moving cats were measured using auditory step functions in the form of tone bursts of 2000 Hz. The most prominent components of the AEP of the inferior colliculus were a positive wave of 13 msec and a negative wave of 40–55 msec latency. The AEP of the medial geniculate nucleus was characterized by a large negative wave peaking at 35–40 msec. During spindle sleep and slow wave sleep stages changes in the AEPs of both nuclei occured.Transient evoked responses of the inferior colliculus, medial geniculate nucleus and reticular formation were transformed to the frequency domain using the Laplace transform (one sided Fourier transform) in order to obtain frequency characteristics of the systems under study. The amplitude characteristics of IC, MG. and RF obtained in this way revealed maxima in alpha (8–13 Hz), beta (18–35 Hz) and higher frequency (50–80 Hz) ranges. During spindle sleep stage a maximum in the theta frequency range (3–8 Hz) and during slow wave sleep maximum in the delta (1–3 Hz) frequency range appeared in the amplitude characteristics of these nuclei.The amplitude characteristics of the inferior colliculus and medial geniculate nucleus were compared with the amplitude characteristics of other brain structures. The comparison of AEPs and amplitude frequency characteristics obtained using these AEPs reveals that the existence of a number of peaks (waves) with different latencies in the time course does not necessarily indicate the existence of different functional structures or neural groups giving rise to these waves. The entire time course of evoked potentials and not the number and latencies of the waves, carries, the whole information concerning different activities and frequency selectivities of brain structures.Supported by Turkish Scientific and Technical Research Council Grant TAG-266.Presented in Part at the VIIIth International Congress of Electroencephalography and Clinical Neurophysiology in Marseilles, September 1–7, 1973.  相似文献   

11.
Archival bottom‐mounted audio recorders were deployed in nine different areas of the western Mediterranean Sea, Strait of Gibraltar, and adjacent North Atlantic waters during 2006–2009 to study fin whale (Balaenoptera physalus) seasonal presence and population structure. Analysis of 29,822 recording hours revealed typical long, patterned sequences of 20 Hz notes (here called “song”), back‐beats, 135–140 Hz notes, and downsweeps. Acoustic parameters (internote interval, note duration, frequency range, center and peak frequencies) were statistically compared among songs and song notes recorded in all areas. Fin whale singers producing songs attributable to the northeastern North Atlantic subpopulation were detected crossing the Strait of Gibraltar and wintering in the southwestern Mediterranean Sea (Alboran basin), while songs attributed to the Mediterranean were detected in the northwest Mediterranean basin. These results suggest that the northeastern North Atlantic fin whale distribution extends into the southwest Mediterranean basin, and spatial and temporal overlap may exist between this subpopulation and the Mediterranean subpopulation. This new interpretation of the fin whale population structure in the western Mediterranean Sea has important ecological and conservation implications. The conventionally accepted distribution ranges of northeastern North Atlantic and Mediterranean fin whale subpopulations should be reconsidered in light of the results from this study.  相似文献   

12.
Summary Sleep was studied by continuous 24-h recordings in adult male Syrian hamsters, chronically implanted with EEG and EMG electrodes. Three vigilance states were determined using visual scoring and EEG power spectra (0.25–25 Hz) computed for 4-s episodes.The effects of two methods of total sleep deprivation (SD) were examined on vigilance states and the EEG power spectrum. The animals were subjected to 24 h SD by: (1) forced locomotion in a slowly rotating drum, (2) gentle handling whenever the hamsters attempted a sleeping posture. In addition, the hamsters were subjected to SD by handling during the first 3 h of the L period.Sleep predominated in the L period (78.2% of 12 h) and the D period (51.2%). The power spectra of the 3 vigilance states were similar during the L and D period. In NREM sleep, power density values in the low frequency range (0.25–6.0 Hz) exceeded those of REM sleep and W by a maximum factor of 8.3 and 2.8, respectively. At frequencies above 16 Hz, NREM and REM sleep power density values were significantly lower than during W. A progressive decrease in power density for low EEG frequencies (0.25–7 Hz) during NREM sleep was seen in the course of the L period. Power density values of higher frequencies (8–25 Hz) increased at the end of the L period and remained high during the first hours of the D period.The effect of prolonged SD on vigilance states and EEG spectra was similar by both methods and strikingly small compared to similar results in rats. In contrast, 3 h SD induced a large and more prolonged effect. The similarities and differences of sleep and sleep regulation are summarized for the hamster, rat and man.Abbreviations EEG electroencephalogram - LD light dark - REM rapid eye movements - NREM sleep non REM sleep - W waking - SD sleep deprivation - TST total sleep time - L light - D dark  相似文献   

13.
Evoked Potentials in the hippocampus dorsalis are measured using chronically implanted and freely moving cats in applying auditory stimulations in the form of tone bursts of 3000 Hz. The hippocampal evoked potentials are characterized by 3 positive (I, III, V) and 3 negative peaks (II, IV, VI). Peaks I to VI have latencies of about 10, 28, 50, 75, 95 and 125 msec. These responses are then analyzed with a Laplace transform in order to obtain the hippocampal frequency characteristics. The amplitude frequency characteristic depicts resonance maxima of EEG-amplitude in theta (3–8 Hz) and beta (18–32 Hz) frequency ranges. A resonance in the frequencies of 3–8 Hz was expected because of the spontaneous hippocampal theta activity. Therefore this finding emphasize the reliability of the mathematical method used. On the other hand the existence of a hippocampal beta selectivity is highly remarkable and apparently the hippocampal activity is regulated at least by two different systems. The use of the mathematical method (Laplace transform) indicates that the simple knowledge of the latencies and the number of potential waves(usuallydenoted as P 1, P 2, ..., N 1, N 2 ...) cannot allow exact statements on mechanisms causing the formation of these peaks. Rather the slope and slope changes of the waves are determining. Different waves in the transient evoked response can be generated from a mechanism having only one resonant maximum in the frequency domain.Supported in part by Turkish Scientific and Technical Research Council Grant No. TAG-182.  相似文献   

14.

Rationale

Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined.

Methods

In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure (“which interval is different?”). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction.

Results

Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2–4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes.

Conclusions

Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels.  相似文献   

15.
Summary We investigated the ability of pheromone-sensitive olfactory receptors of male Manduca sexta to respond to 20-ms pulses of bombykal, the major component of the conspecific pheromonal blend. Isolated pulses of bombykal elicited a burst of activity which decreased exponentially with a time constant of 160–250 ms. Trains of pulses delivered at increasing frequencies (0.5–10 Hz) elicited temporally modulated responses at up to 3 Hz. Concentration of the stimulus (1, 10, 100 ng per odor source) had a marginal effect on the temporal resolution of the receptors. Within a train, the responses to individual pulses remained constant, except for 10-Hz trains (short-term adaptation). A dose-dependent decline of responsiveness was observed during experiments (long-term adaptation). Although individual neurons may not respond faithfully to each pulse of a train, the population of receptors sampled in this study appears to be capable of encoding the onset of odor pulses at frequencies of up to at least 3 Hz.Abbreviations BAL bombykal or (E,Z)-10,12-hexadecadienal - C15 (E,Z)-11,13-pentadecadienal - HAL (E)-2-hexenal - EAG electroantennogram - P1, P2, P3 single stimulus pulses - PSTH peri-stimulus histogram - SC synchronization coefficient - 0.5, 1, 2, 3, 10 Hz stimulus trains  相似文献   

16.
In addition to spectral call components, temporal patterns in the advertisement-call envelope of green treefrog males (Hyla cinerea) provide important cues for female mate choice. Rapid amplitude modulation (AM) with rates of 250–300 Hz is typical for this species advertisement calls. Here we report data on the encoding of these rapid call modulations by studying the responses of single auditory nerve fibers to two-tone stimuli with envelope periodicities close to those of the natural call. The free-field response properties of 86 nerve fibers were studied from 32 anesthetized males. The accuracy of stimulus envelope coding was quantified using both a Gaussian function fit to the interspike interval histograms derived from the first seven 20-ms stimulus segments, and the vector-strength metric applied to the phase-locked responses. Often, AM encoding in the initial stimulus segment was more faithful than that in its second half. This result may explain why conspecific females prefer calls in which the initial segment is unmasked rather than masked. Both the questions of pattern recognition and localization are discussed, and the data are related to behavioral observations of female choice and localization performance in this species.  相似文献   

17.
Summary In order to determine whether correlations exist between hearing and the known soundproduction abilities in piranhas (Serrasalmus nattereri), behavioral auditory thresholds were obtained with continuous tones and tone pulses. A new avoidance conditioning method was developed, where fin movements of caged animals were taken as response to a tone. The mean values of the far-field audiogram ranged from –26 dB re. 0.1 Pa at 80 Hz to a low point of about –43 dB between 220–350 Hz and rose to –14 dB at 1500 Hz. The frequency spectrum of typical drumming sounds (barks) covers the range of best hearing (100–600 Hz).Piranhas are able to integrate temporally acoustic signals: in threshold investigations with repeated tone pulses, the thresholds rose approximately exponentially with decreasing pulse duration and repetition rate; thresholds of single pulses were higher with shorter pulses. The temporal patterning of the calls and the temporal integration ability are well correlated in piranhas, optimizing intraspecific detectability and total length of sound production with respect to the fatigue characteristics of drumming muscles and habituation of the neural pacemaker.The lagenae of the piranhas were found to face laterofrontally; this is thought to be a morphological adaptation to sound production, saving the lagenae from excessive strain during activation of the drumming muscles.Abbreviations Cl acoustic condition 1, where a board with the air loudspeaker rested on the experimental tank upon a layer of felt - C2 acoustic condition 2, where the loudspeaker was freely mounted 20 cm above the water surface - d p pulse duration - f p pulse repetition rate - D duty cycle  相似文献   

18.
Polidocanol-solubilized osseous plate alkaline phosphatase was modulated by manganese ions in a similar way as by zinc ions. For concentrations up to 1.0 nm, the enzyme was stimulated by manganese ions, showing site-site interactions (n = 2.2). However, larger concentrations (> 0.1 m) were inhibitory. Manganese ions could play the role of zinc ions stimulating the enzyme synergistically in the presence of magnesium ions (K d = 7.2 m; V = 1005.5 U mg–1). Manganese ions could also play the role of magnesium ions, stimulating the enzyme synergistically in the presence of zinc ions (K d = 2.2 m; V = 1036.7 U mg–1). However, manganese ions could not substitute for zinc and magnesium at the same time since ion assymetry is necessary for full activity of the enzyme. A steady-state kinetic model for the modulation of enzyme activity by manganese ions is proposed.  相似文献   

19.
Summary The retina of the garter snake contains 3 morphologically distinct classes of cone photoreceptor. The spectral mechanisms in the retinas of garter snakes (Thamnophis sirtalis and T. marcianus) were studied by recording a retinal gross potential, the electroretinogram, using a flicker photometric procedure. Spectral sensitivity functions recorded with stimuli presented at high temporal frequency (62.5 Hz) are broadly peaked in the region of 550–570 nm. These functions remain spectrally invariant (a) in the face of significant changes in stimulus pulse rate (8–62.5 Hz), (b) whether the eye is light or dark adapted, and (c) under conditions of intense chromatic adaptation. It is concluded that the garter snake has only a single class of cone pigment. The results from a curve fitting analysis suggests that this pigment has peak absorbance at about 556 nm.  相似文献   

20.
ABSTRACT

Sperm whale Physeter macrocephalus L. clicks have been studied for nearly fifty years, during which time great efforts have been made to understand the functions and production mechanisms of this sound. Other than clicks, sperm whales may also produce low intensity sounds arranged in short sequences, named trumpets, which have been recorded occasionally in the past by few groups of researchers. Sperm whale recordings collected in the Mediterranean Sea with a towed array and digital tags were used to describe the temporal and spectral characteristics of trumpets. This sound is made of a series of repeated units, around 0.2 s long, arranged in short sequences lasting between 0.6 s to 3.5 s. Each of these units comprises an amplitude modulated tonal waveform with a complex harmonic structure, and a spectrum composed of a low frequency component at 500 Hz and a mid-frequency component at 3 kHz. The apparent source level could be estimated for one of the trumpets and was estimated to be 172 dBpp re: 1μPa at lm with energy flux density of 147 dB re: 1μ Pa2s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号