首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chagas' disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America, which current treatment presents variable efficacy and serious side effects. A previous screening of naphthoquinone derivatives pointed to the naphthoimidazoles N1, N2 and N3 as the most active compounds against T. cruzi. In this study, a proteomic approach was employed to identify proteins involved in the N1, N2 and N3 trypanocidal activity. In epimastigotes, the naphthoimidazoles are involved in multiple mechanisms: (a) redox metabolism; (b) energy production; (c) ergosterol biosynthesis; (d) cytoskeleton assembly; (e) protein metabolism and biosynthesis; and (f) chaperones modulation. They induce an imbalance in crucial pathways of the parasite, leading to the loss of metabolic homeostasis and T. cruzi death.  相似文献   

2.
Trypanosoma cruzi is a parasite responsible for Chagas disease. The identification of new targets for chemotherapy is a major challenge for the control of this disease. Several lines of evidences suggest that the translational system in trypanosomatids show important differences compared to other eukaryotes. However, there little is known information about this. We have performed a detailed data mining search for ribosomal protein genes in T. cruzi genome data base combined with mass spectrometry analysis of purified T. cruzi ribosomes. Our results show that T. cruzi ribosomal proteins have ∼50% sequence identity to yeast ones. Nevertheless, some parasite proteins are longer due to the presence of several N- or C-terminal extensions, which are exclusive of trypanosomatids. In particular, L19 and S21 show C-terminal extensions of 168 and 164 amino acids, respectively. In addition, we detected two 60S subunit proteins that had not been previously detected in the T. cruzi total proteome; namely, L22 and L42.  相似文献   

3.
The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti–T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti–T. cruzi drug entities in the near future, are reviewed here.  相似文献   

4.

Background

Trypanosoma cruzi is a protist parasite that causes Chagas disease. Several proteins that are essential for parasite virulence and involved in host immune responses are anchored to the membrane through glycosylphosphatidylinositol (GPI) molecules. In addition, T. cruzi GPI anchors have immunostimulatory activities, including the ability to stimulate the synthesis of cytokines by innate immune cells. Therefore, T. cruzi genes related to GPI anchor biosynthesis constitute potential new targets for the development of better therapies against Chagas disease.

Methodology/Principal Findings

In silico analysis of the T. cruzi genome resulted in the identification of 18 genes encoding proteins of the GPI biosynthetic pathway as well as the inositolphosphorylceramide (IPC) synthase gene. Expression of GFP fusions of some of these proteins in T. cruzi epimastigotes showed that they localize in the endoplasmic reticulum (ER). Expression analyses of two genes indicated that they are constitutively expressed in all stages of the parasite life cycle. T. cruzi genes TcDPM1, TcGPI10 and TcGPI12 complement conditional yeast mutants in GPI biosynthesis. Attempts to generate T. cruzi knockouts for three genes were unsuccessful, suggesting that GPI may be an essential component of the parasite. Regarding TcGPI8, which encodes the catalytic subunit of the transamidase complex, although we were able to generate single allele knockout mutants, attempts to disrupt both alleles failed, resulting instead in parasites that have undergone genomic recombination and maintained at least one active copy of the gene.

Conclusions/Significance

Analyses of T. cruzi sequences encoding components of the GPI biosynthetic pathway indicated that they are essential genes involved in key aspects of host-parasite interactions. Complementation assays of yeast mutants with these T. cruzi genes resulted in yeast cell lines that can now be employed in high throughput screenings of drugs against this parasite.  相似文献   

5.
Chagas’ disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most serious parasitic diseases in Latin America. The currently available chemotherapy, based on nifurtimox or benznidazole, is unsatisfactory due to the limited efficacy in the prevalent chronic stage of the disease and toxic side effects. In order to address these deficiencies, a series of quinolones based novel molecules have been synthesized and evaluated as potential antitrypanosomal agents. The most active analogue 10 inhibited T. cruzi with an IC50 of 1.3 μg/mL. The results of this study have implications in the development of novel quinolone’s antitrypanosomal agents.  相似文献   

6.
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.  相似文献   

7.
The intracellular parasite Trypanosoma cruzi is the aetiological agent of Chagas disease, a public health concern with an increasing incidence rate. This increase is due, among other reasons, to the parasite''s drug resistance mechanisms, which require nicotinamide adenine dinucleotide (NAD+). Furthermore, this molecule is involved in metabolic and intracellular signalling processes necessary for the survival of T. cruzi throughout its life cycle. NAD+ biosynthesis is performed by de novo and salvage pathways, which converge on the step that is catalysed by the enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) (enzyme commission number: 2.7.7.1). The identification of the NMNAT of T. cruzi is important for the development of future therapeutic strategies to treat Chagas disease. In this study, a hypothetical open reading frame (ORF) for NMNAT was identified in the genome of T. cruzi. The corresponding putative protein was analysed by simulating structural models. The ORF was amplified from genomic DNA by polymerase chain reaction and was further used for the construction of a corresponding recombinant expression vector. The expressed recombinant protein was partially purified and its activity was evaluated using enzymatic assays. These results comprise the first identification of an NMNAT in T. cruzi using bioinformatics and experimental tools and hence represent the first step to understanding NAD+ metabolism in these parasites.  相似文献   

8.
Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2-dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention.  相似文献   

9.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

10.
Trypanosoma cruzi is the etiological agent of Chagas’ disease, a pathogenesis that affects millions of people in Latin America. Here, we report the crystal structure of dihydroorotate dehydrogenase (DHODH) from T. cruzi strain Y solved at 2.2 Å resolution. DHODH is a flavin mononucleotide containing enzyme, which catalyses the oxidation of l-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. Genetic studies have shown that DHODH is essential for T. cruzi survival, validating the idea that this enzyme can be considered an attractive target for the development of antichagasic drugs. In our work, a detailed analysis of T. cruzi DHODH crystal structure has allowed us to suggest potential sites to be further exploited for the design of highly specific inhibitors through the technology of structure-based drug design.  相似文献   

11.
The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.  相似文献   

12.
The clonal evolution model postulated for Trypanosoma cruzi predicts a correlation between the phylogenetic divergence of T. cruzi clonal genotypes and their biological properties. In the present study, the linkage between phylogenetic divergence of the parasite and IgG, IgG1, IgG2a and IgG2b response has been evaluated during the acute and chronic phases of the experimental infection. Eight laboratory-cloned stocks representative of this phylogenetic diversity and including the lineages T. cruzi I (genotypes 19 and 20), T. cruzi II (genotype 32) and T. cruzi (genotype 39) have been studied. The results showed that the pattern of humoral immune response was correlated with T. cruzi genotype, and that stocks included in genotype 20 were responsible for the high IgG response in the acute and chronic phases. Moreover, T. cruzi I lineage was more efficient in over-expressing all subclasses of specific anti-parasite IgG than either T. cruzi II or T. cruzi lineages. Curiously, the alteration in the pattern of antibodies induced by Benznidazole treatment was related to the phase of the infection but not to the genotype of the parasite. The data suggest that genotypes of T. cruzi are able to drive levels/subclasses of specific IgG, hence giving rise to further concerns about the sensitivity of serological assays in the diagnosis of human Chagas disease.  相似文献   

13.
The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts approximately 8 million people in Latin America. Diagnosis of chronic Chagas disease is currently based on serological tests because this condition is usually characterized by high anti-T. cruzi IgG titers and low parasitemia. The antigens used in these assays may have low specificity due to cross reactivity with antigens from related parasite infections, such as leishmaniasis, and low sensitivity caused by the high polymorphism among T. cruzi strains. Therefore, the identification of new T. cruzi-specific antigens that are conserved among the various parasite discrete typing units (DTUs) is still required. In the present study, we have explored the hybrid nature of the T. cruzi CL Brener strain using a broad genome screening approach to select new T. cruzi antigens that are conserved among the different parasite DTUs and that are absent in other trypanosomatid species. Peptide arrays containing the conserved antigens with the highest epitope prediction scores were synthesized, and the reactivity of the peptides were tested by immunoblot using sera from C57BL/6 mice chronically infected with T. cruzi strains from the TcI, TcII or TcVI DTU. The two T. cruzi proteins that contained the most promising peptides were expressed as recombinant proteins and tested in ELISA experiments with sera from chagasic patients with distinct clinical manifestations: those infected with T. cruzi from different DTUs and those with cutaneous or visceral leishmaniasis. These proteins, named rTc_11623.20 and rTc_N_10421.310, exhibited 94.83 and 89.66% sensitivity, 98.2 and 94.6% specificity, respectively, and a pool of these 2 proteins exhibited 96.55% sensitivity and 98.18% specificity. This work led to the identification of two new antigens with great potential application in the diagnosis of chronic Chagas disease.  相似文献   

14.
Poly(ADP-ribosylation) is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose) polymerases (PARPs). In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose) metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.  相似文献   

15.
Chagas disease affects about 5 million people across the world. The etiological agent, the intracellular parasite Trypanosoma cruzi (T. cruzi), can be diagnosed using microscopy, serology or PCR based assays. However, each of these methods has their limitations regarding sensitivity and specificity, and thus to complement these existing diagnostic methods, alternate assays need to be developed. It is well documented that several parasite proteins called T. cruzi Excreted Secreted Antigens (TESA), are released into the blood of an infected host. These circulating parasite antigens could thus be used as highly specific biomarkers of T. cruzi infection. In this study, we have demonstrated that, using a SELEx based approach, parasite specific ligands called aptamers, can be used to detect TESA in the plasma of T. cruzi infected mice. An Enzyme Linked Aptamer (ELA) assay, similar to ELISA, was developed using biotinylated aptamers to demonstrate that these RNA ligands could interact with parasite targets. Aptamer L44 (Apt-L44) showed significant and specific binding to TESA as well as T. cruzi trypomastigote extract and not to host proteins or proteins of Leishmania donovani, a related trypanosomatid parasite. Our result also demonstrated that the target of Apt-L44 is conserved in three different strains of T. cruzi. In mice infected with T. cruzi, Apt-L44 demonstrated a significantly higher level of binding compared to non-infected mice suggesting that it could detect a biomarker of T. cruzi infection. Additionally, Apt-L44 could detect these circulating biomarkers in both the acute phase, from 7 to 28 days post infection, and in the chronic phase, from 55 to 230 days post infection. Our results show that Apt-L44 could thus be used in a qualitative ELA assay to detect biomarkers of Chagas disease.  相似文献   

16.
Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas’s disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.  相似文献   

17.
The aim of this review is to describe the contributions of the knowledge of T-cell responses to the understanding of the physiopathology and the responsiveness to etiological treatment during the chronic phase of Chagas disease. T-helper (Th)1 and interleukin (IL)-10 Trypanosoma cruzi-specific T-cells have been linked to the asymptomatic phase or to severe clinical forms of the disease, respectively or vice versa, depending on the T. cruzi antigen source, the patient’s location and the performed immunological assays. Parasite-specific T-cell responses are modulated after benznidazole (BZ) treatment in chronically T. cruzi-infected subjects in association with a significant decrease in T. cruzi-specific antibodies. Accumulating evidence has indicated that treatment efficacy during experimental infection with T. cruzi results from the combined action of BZ and the activation of appropriate immune responses in the host. However, strong support of this interaction in T. cruzi-infected humans remains lacking. Overall, the quality of T-cell responses might be a key factor in not only disease evolution, but also chemotherapy responsiveness. Immunological parameters are potential indicators of treatment response regardless of achievement of cure. Providing tools to monitor and provide early predictions of treatment success will allow the development of new therapeutic options.  相似文献   

18.
Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson’s r value of 0.88 (P value <0.05), indicating that this class of compounds could inhibit the activity of the trypanosome organism via T. cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r = 0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease.  相似文献   

19.
Chagas disease remains a serious public health problem in several Latin American countries. New chemotherapy is urgently needed since current drugs are limited in efficacy and exhibit undesirable side effects. Aromatic diamidines and analogs are well known anti-parasitic agents and in this study, we have evaluated the in vitro trypanocidal effect of several different heterocyclic cationic compounds, including diamidines (DB1195, DB1196 and DB1345), a monoamidine (DB824), an arylimidamide (DB613A) and a guanylhydrazone (DB1080) against amastigotes and bloodstream trypomastigotes of Trypanosoma cruzi, the etiological agent of Chagas disease. Our present findings showed that all compounds exerted, at low-micromolar doses, a trypanocidal effect upon both intracellular parasites and bloodstream trypomastigotes of T. cruzi. The activity of DB1195, DB1345, DB824 and DB1080 against bloodstream forms was reduced when these compounds were assayed in the presence of mouse blood possibly due to their association with plasma constituents and/or due to metabolic instability of the compounds. However, trypanocidal effects of DB613A and DB1196 were not affected by plasma constituents, suggesting their potential application in the prophylaxis of banked blood. In addition, potency and selectivity of DB613A, towards intracellular parasites, corroborate previous results that demonstrated the highly promising activity of arylimidamides against this parasite, which justify further studies in experimental models of T. cruzi infection.  相似文献   

20.
Current understanding of key cellular pathways, which are activated by the interaction between T. cruzi and host immunity, is crucial for controlling T. cruzi infection and also for limiting the development of the immunopathological symptoms of Chagas´ disease. Here, we focus on recent advances in the knowledge of modulation of innate receptors such as TLRs and NLRs, especially NLRP3, by T. cruzi in different cells of the immune system. On the other hand, the modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival. In this sense, we discuss the importance of the metabolism of two amino acids: L-arginine and tryptophan, and evaluate the role of iNOS, arginase and IDO enzymes in the regulation of innate and adaptive immune response during this infection; and, finally, we also discuss how T. cruzi exploits the AhR, mTOR and Wnt signaling pathways to promote their intracellular replication in macrophages, thus evading the host's immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号