首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glutamine synthetase in Escherichia coli is regulated by adenylation and deadenylation reactions. The adenylation reaction converts the divalent cation requirement of the enzyme from Mg2+ to Mn2+. Previously, the catalytic action of unadenylated glutamine synthetase was elucidated by monitoring the intrinsic tryptophan fluorescence change accompanying substrate binding. However, due to the lack of changes in the tryptophan fluorescence, a similar study could not be done with the adenylated enzyme. In this study, therefore, an extrinsic fluor is introduced into the adenylated glutamine synthetase by adenylating the enzyme with 2-aza-1,N6-ethenoadenosine triphosphate, a fluorescent analog of ATP. The modified enzyme (aza-epsilon-glutamine synthetase) exhibits catalytic and kinetic properties similar to those of the naturally adenylated enzyme. The results of fluorometric studies on this aza-epsilon-glutamine synthetase indicated that L-glutamate and ATP bind to both Mn2+ and Mg2+ forms of the enzyme in a random order, but only the Mn2+ form is capable of forming a highly reactive enzyme-bound intermediate which is a prerequisite for the reaction with NH4+ to form products. The extrinsic fluorescence changes are also used to determine the binding constants of various substrates and inhibitors of both the biosynthetic and gamma-glutamyl transfer reactions.  相似文献   

2.
Kinetic mechanism of Escherichia coli glutamine synthetase   总被引:8,自引:0,他引:8  
T D Meek  J J Villafranca 《Biochemistry》1980,19(24):5513-5519
  相似文献   

3.
Further details are given of crystals of glutamine synthetase prepared from Escherichia coli. Crystals of two kinds have been observed: (1) rhombic dodecahedra which correspond to the morphology of the crystals studied by Eisenberg et al. (1971) (and which were found by them to contain dodecamers), and (2) rhombohedra, reported here. Cell dimensions and packing considerations led to the consideration of two possible structures for the rhombohedral crystals. These we have called the “T = 7 structure” and the “B.C.C. structure”. The T = 7 structure would be related to that derived by Eisenberg and would contain dodecamers, but is inconsistent with our X-ray intensity data. The B.C.C. structure is considered more probable. It is built of cubic octomers or square tetramers. Electron micrographs of our glutamine synthetase preparations show a wide variety of aggregates, including dodecamers and tetramers. The unit cell dimensions of our crystals are a = 140 ± 2 Å, and c = 148 ± 2 Å. The Laue symmetry group is 3̄m P31.  相似文献   

4.
D D Clark  J J Villafranca 《Biochemistry》1985,24(19):5147-5152
Isotope-exchange enhancement studies, a variation on positional isotope-exchange enhancement as described by Raushel and Garrard [Raushel, F. M., & Garrard, L. J. (1984) Biochemistry 23, 1791-1795], are used to establish the point in the biosynthetic reaction of Escherichia coli glutamine synthetase at which gamma-glutamyl phosphate is formed. In these experiments, the behavior of the reverse biosynthetic reaction, i.e., the reaction of ADP, L-glutamine, and phosphate to form NH4+, L-glutamate, and ATP, is examined as a function of the concentration of ammonium ion. By varying the concentration of NH4+, the ratio of the velocity of isotope exchange to the velocity of net reaction, as measured by the rate of 18O depletion from labeled phosphate and the rate of production of L-glutamate, respectively, can be modulated in a mechanism-dependent manner. Evidence is presented demonstrating the presence of a branch point in the mechanism. The enzyme-ATP-glutamate complex may partition in two ways, one involving binding of ammonium ion and the other involving the chemical transformation to form the enzyme-ADP-gamma-glutamyl phosphate complex. The alternate pathways then rejoin upon formation of the enzyme-ADP-NH4+-gamma-glutamyl phosphate complex. Because of the branch point, there is no absolute requirement that ammonium ion be absent or present in order for the formation of gamma-glutamyl phosphate to occur. At high concentrations of ammonia, one pathway through the branch can be eliminated, effectively making that portion of the pathway ordered, with ATP, L-glutamate, and NH4+ binding consistent with our previously reported steady-state kinetic mechanism [Meek, T. D., & Villafranca, J. J. (1980) Biochemistry 19, 5513-5519].  相似文献   

5.
S G Rhee  P B Chock 《Biochemistry》1976,15(8):1755-1760
The kinetics of protein fluorescence change exhibited by ADP or orthophosphate addition to the Mg2+-or Mn2+-activated unadenylylated glutamine synthetase from Escherichia coli were studied. The kinetic patterns of these reactions are incompatible with a simple bimolecular binding process and a mechanism which required protein isomerization prior to substrate binding. They are consistent with a mechanism in which direct substrate binding is followed by a substrate-induced conformational change step, ES in equilibrium ES. At pH 7.0 and 15 degrees C, the association constants for the direct binding (K1) of ADP to MnE1.0 and of Pi to MnE1.0ADP are 3.9 X 10(4) and 2.28 X 10(2) M(-1), respectively. The association constant for the direct binding of ADP to MnE1.0Pi is 2.3 X 10(4) M(-1) at pH 7.0 and 19 degrees C. The deltaG degrees for the substrate-induced conformational step are -3.5 and -1.3 kcal mol(-1) due to ADP binding to MnE1.0Pi and MnE1.0, respectively, and -1.4 kcal mol(-1) due to Pi binding to MnE1.0ADP. Rate constants, k2 and k(-2), for the isomerization step are: 90 and 9.5 s(-1) for ADP binding to MnE1.0, 440 and 0.36 s(-1) for ADP binding to MnE1.0Pi, and 216 and 1.8 s(-1) for Pi binding to MnE1.0ADP. Due to low substrate affinity, the association constant for direct Pi binding to MnE1.0 was roughly estimated to be 230 M(-1) and k2 = 750 s(-1), k(-2) = 250 s(-1). At 9 degrees C and pH 7.0, the estimated association constants for the direct ADP binding to MgE1.0 and MgE1.0 Pi are 1.8 X 10(4) and 1.6 X 10(4) M(-1), respectively; and the rate constants for the isomerization step associated with the corresponding reaction are k2 = 550 s(-1), k(-2) = 500 s(-1), and k2 = 210 s(-1), k(-2) = 100 s(-1). From the kinetic analysis it is evident that the inability of Mn2+ to support biosynthetic activity of the unadenylylated enzyme is due to the slow rate of ADP release from the MnE1.0PiADP complex. In contrast the large k(-2) obtained for ADP release from the MgE1.0ADP or MgE1.0PiADP complex indicates that this step is not rate limiting in the biosynthesis of glutamine since the k catalysis obtained under the same conditions is 7.2 s(-1).  相似文献   

6.
7.
8.
9.
10.
Although glutamine synthetase from Escherichia coli is composed of 12 identical subunits, there is no evidence that homologous subunit interactions occur in fully unadenylylated or fully adenylylated enzyme. Meister and co-workers (Manning, J. M., Moore, S., Rowe, W. B., and Meister, A. (1969) Biochemistry 8, 2681-2685) have shown that L-methionine-S-sulfoximine, one of the four diastereomers of methionine sulfoximine, preferentially inhibits glutamine synthetase irreversibly in the presence of ATP, due to the formation of tightly bound products, ADP, and methionine sulfoximine phosphate. Using highly purified unadenylylated glutamine synthetase and the two resolved diastereomers of L-methionine-S,R-sulfoximine, we have studied both the kinetics of glutamine synthetase inactivation in the presence of excess methionine sulfoximine and ATP, and the binding of methionine sulfoximine to the enzyme. The results reveal that (a) the apparent first order rate constant of irreversible inactivation by the S isomer decreases progressively from the expected first order rate, indicating that an inactivated subunit retards the reactivity of its neighboring subunits toward methionine sulfoximine and ATP; (b) the R isomer does not inactivate glutamine synthetase irreversibly in the presence of ATP; however, the R isomer is capable of protecting the enzyme temporarily from the irreversible inhibition by the S isomer; and (c) the binding of the S isomer monitored by changes in protein fluorescence exhibits an apparent negative cooperative binding isotherm, whereas the R isomer yields an apparent positive cooperative pattern.  相似文献   

11.
The covalently attached AMP moiety of adenylylated glutamine synthetase from Escherichia coli has been replaced by its fluorescent analog, 2-aza-1,N6-etheno-AMP (aza-epsilon-AMP). The modified glutamine synthetase (aza-epsilon-GS) exhibits divalent cation requirement (Mn2+, rather than Mg2+), pH profile, Vmax, and Km similar to those of naturally adenylylated glutamine synthetase. Whereas naturally adenylylated glutamine synthetase exhibits only negligible fluorescence changes upon the binding of substrates, aza-epsilon-GS exhibits large fluorescence changes. The fluorescence changes have been used by means of a stopped flow technique to reveal the involvement of five fluorometrically distinct intermediates in the catalytic cycle for the biosynthesis of glutamine catalyzed by the adenylylated glutamine synthetase. The mechanism is very similar to that previously established for the unadenylylated enzyme, using intrinsic tryptophan fluorescence. Substrates bind via a rapid equilibrium random mechanism, but the reaction proceeds in a stepwise manner. The formation of an enzyme-bound intermediate (probably gamma-glutamyl phosphate + ADP) from ATP and L-glutamate is the rate-limiting step, with the subsequent reaction of the enzyme-bound intermediate occurring very rapidly. The success in elucidating this complex mechanism is due largely to the vastly different amplitudes of the fluorescence changes at the two excitation maxima (300 nm and 360 nm) of the aza-epsilon-AMP moiety which accompany the formation of the various intermediates.  相似文献   

12.
13.
14.
15.
Urea-induced dissociation and unfolding of manganese.glutamine synthetase (Mn.GS) have been studied at 37 degrees C (pH 7) by spectroscopic and calorimetric methods. In 0 to approximately 2 M urea, Mn.GS retains its dodecameric structure and full catalytic activity. Mn.GS is dissociated into subunits in 6 M urea, as evidenced by a 12-fold decrease in 90 degrees light scattering and a monomer molecular weight of 51,800 in sedimentation equilibrium studies. The light scattering decrease in 4 M urea parallels the time course of Trp exposure but occurs more rapidly than changes in secondary structure and Tyr exposure. Early and late kinetic steps appear to involve predominantly disruption of intra-ring and inter-ring subunit contacts, respectively, in the layered hexagonal structure of Mn.GS. The enthalpies for transferring Mn.GS into urea solutions have been measured by titration calorimetry. After correcting for the enthalpy of binding urea to the protein, the enthalpy of dissociation and unfolding of Mn.GS is 14 +/- 4 cal/g. A net proton uptake of approximately 50 H+/dodecamer accompanies unfolding reactions. The calorimetric data are consistent with urea binding to multiple, independent sites in Mn.GS and the number of binding sites increasing approximately 9-fold during the protein unfolding.  相似文献   

16.
Antibodies against the alpha and beta subunits of phenylalanyl-tRNA synthetase were fractionated by ion exchange chromatography into different classes and then digested with papain to yield the respective Fab fragments. The preparations obtained were used to investigate (i) whether the alpha and beta polypeptides share any common antigenic determinants and (ii) whether immunological methods are able to resolve the catalytic function of the subunits of this enzyme (or principally of oligomeric enzymes). As to the first problem, immunodiffusion and complement fixation experiments showed that there is no immunological relatedness between the subunits which argues against the existence of sequence homoligies. As to the second question investigated, it was found that any binding of immunoglobulins of Fab fragments to the alpha or the the beta subunit affects enzyme activity either in the direction of activation or inhibition. These results therefore show that the immunological approach is not appropriate for resolving subunit-specific funcitons, possibly as a consequence of conformational changes induced in the enzyme by the binding of the immunoglobulins of Fab fragments.  相似文献   

17.
18.
Measurements are reported on certain isotopic fluxes during the net conversion of glutamine, ADP and Pi to glutamate, NH3, and ATP by Escherichia coli glutamine synthetase (adenylylated form, Mn2+ activated) in presence of a hexokinase/glucose trap to remove the ATP formed during the reaction. The results show that the transfer of oxygens from Pi to glutamine is the most rapid of the measured isotopic interchanges, over five oxygens from Pi being transferred to glutamine for each glutamate formed by net reaction. Under similar conditions, the oxygen transfer from Pi to glutamate, was stimulated somewhat by an increase in the glutamate concentration but inhibited by an increase in the ammonia concentration. The enzyme from brain or peas did not show the rapid transfer of 18O from Pi to glutamine shown by the E. coli enzyme. Deductions are also made from the data about the availability of the oxygens of gamma-carboxyl of bound glutamate for reaction. The most logical explanation of the results with the E. coli enzyme is that the gamma-carboxyl group of bound glutamate has sufficient rotational freedom so that under conditions of rapid substrate interconversion either carboxylate oxygen can participate in the reaction. The results with the pea enzyme are consistent with hindered rotation of the gamma-care additional findings make likely a relative order of certain catalytic steps for the E. coli enzyme as follows: ATP release less than NH3 release less than glutamate release less than substrate interconversion less than glutamine release and Pi release and glutamate release less than ADP release.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号